首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Photoadaptation of photosynthesis in Gonyaulax polyedra   总被引:1,自引:0,他引:1  
Gonyaulax polyedra Stein exhibited a combination of photoadaptive strategies of photosynthesis when only a single environmental variable, the light intensity during growth, was altered. Which of several biochemical/physiological adjustments to the light environment were employed depended on the level of growth irradiance. The photoadaptive strategies employed over any small range of light levels appeared to be those best suited for optimizing photosynthetic performance and not photosynthetic capacity. (Photosynthetic performance, P i, is defined as the rate of photosynthesis occurring at the level of growth irradiance.) Among all photosynthetic parameters examined, only photosynthetic performance showed a consistent correspondence to growth rates of G. polyedra. Above 3500 to 4000 W cm-2, where photosynthetic performance was equal to photosynthetic capacity, cells were not considered light-limited in either photosynthesis or growth. At these higher light levels, photosynthetic perfomance, cell volume, growth rates and respiration rates remained maximal; photosynthetic pigment content varied only slightly, while the photosynthetic capacity of the cells declined. At intermediate light levels (3000 to 1500 W cm-2), photosynthesis, not growth, was light-limited, and photoadaptive strategies were induced which enhance absorption capabilities and energy transfer efficiencies of chlorophyll a to the reaction centers of G. polyedra. Photosynthetic capacity remained constant at about 280 mol O2 cm-3 h-1, while photosynthetic performance ranged from 100 to 130 mol O2 cm-3 h-1. Major increases in photosynthetic pigments, especially peridinin-chlorophyll a-proteins and an unidentified chlorophyll c component, accompanied photoadaptation to low irradiances. Maximal growth rates of 0.3 divisions day-1 were maintained, as were respiration rates of about-80 mol O2 cm-3 h-1 and cell volumes of about 5.4×10-8 cm-3 cell-1. Below about 1250 W cm-2, photosynthesis in G. polyedra was so light-limited that photosynthetic performance was unable to support maximal growth rates. Under these conditions, G. polyedra displayed photostress responses rather than photoadaptive strategies. Photostress was manifested as reduced cell volumes, slower growth, and drastic reductions in pigmentation, photosynthetic capacity, and rates of dark respiration.  相似文献   

2.
Cultures of the marine dinoflagellate Glenodinium sp. were light-shifted and rates of photoadaptation determined by monitoring changes in cell volume, growth rate, pigmentation, parameters of the photosynthesisirradiance (P-I) curves and respiration. To approximate physiological conditions of field populations, cells were cultured on an alternating light-dark cycle of 12hL:12hD, which introduced a daily periodicity of photosynthesis. One result of the present study was to demonstrate how specific parameters of the P-I relationship influenced by periodicity of the light: dark cycle are distinguished from photosynthetic parameters influenced by changes in light level. Under steady-state conditions, rates of both light-saturated (Pmax) and light-limited photosynthesis changed in unison over the day; these changes were not related to pigmentation, and displayed their maxima midday. This close relationship between Pmax and the slope (a) of the cellular P-I curves in steadystate conditions was quickly adjusted when growth illumination was altered. Rates of light-limited photosynthesis were increased under low light conditions and the periodicity of cellular photosynthesis was maintained. The short-term responses of the P-I relationship to changing light level was different, depending on (1) whether the light shift was from high to low light or vice versa, and (2) whether the high light levels were sufficient to promote maximal photosynthesis rates. Major increases in the photosynthetic carotenoid peridinin, associated with a single type of light-harvesting chromo protein in the chloroplast, was observed immediately upon shifting high light cultures to low light conditions. Following pigment synthesis, significant increases in rates of light-limited photosynthesis were observed in about one-tenth the generation time, while cellular photosynthetic potential was unaffected. it is suggested that general results were consistent with suggested that general results were consistent with earlier reports that the major photoadaptive strategy of Glenodinium sp. is to alter photosynthetic unit (PSU) size. Photoadaptive response times to high light were light-dependent, but appeared to be shower than photoadaptive responses to low light. If light intensities were bright enough to maximize growth rates, photosynthetic response times were on the order of a generation period and pigmentation fell quickly as cells divided at a faster rate. If light-intensities were not sufficient to maximize growth rates, then pigment content did not decline, while rates of light-limited photosynthesis declined quickly. In all cases, photoadaptation was followed best by monitoring fast changes in half saturation constants for photosynthesis, rather than fluctuating changes in pigmentation. Results compared well with time-course phenomena reported for other groups of phytoplankton. Overall, results suggest phytoplankton can bring about photo-induced changes in photosynthesis very quickly and thus accommodate widely fluctuating light regimes over short periods of time.  相似文献   

3.
Three genetically distinct clones of Skeletonema costatum (Grev.) Cleve were grown at 20°C under high (274 E m-2 s-1) and low (27 E m-2 s-1) light conditions and their photoadaptive photosynthetic responses compared. When all three clones were grown under low light, pigment analyses and fluorescence excitation spectra demonstrated that the accessory pigments, chlorophyll c and fucoxanthin, became more important in light-harvesting compared to chlorophyll a. Photosynthetic unit sizes increased for Photosystems I and II in low light, but photosynthesis vs irradiance characteristics were not reliable predictors of photosynthetic unit features. Fluorescence excitation spectra and photosynthesis vs irradiance (P-I) relationships indicated that changes in energy transfer occurred independent of changes in pigment content. Large increases in accessory pigment content were not accompanied by large increases in excitation from these pigments. Changes in energy transfer properties were as important as changes in PSU size in governing the photoadaptive responses of S. costatum. When the three clones were grown under identical conditions, each had a separate and distinct pattern of photoadaptation. Significant differences among clones were found for pigment ratios, photosynthetic unit sizes for Photosystems I and II and efficiency of energy transfer between pigments. These strikingly different photoadaptive strategies among clones may partially account for the great ecological success of the diatom species. This is the first quantitative investigation of the importance of both chlorophyll c and fucoxanthin to the adaptive responses of diatoms to light intensity, and represents the most complete characterization of the photoadaptive responses of a single species of marine phytoplankter to differences in light environment.  相似文献   

4.
Japanese scallop (Patinopectin yessoensis Jay) larvae grew faster and were larger after 18 d when fed a diet of high-light(HL)-grown Chaetoceros simplex or HL Pavlova lutheri relative to diets of the same phytoplankton species grown at low light (LL). When provided as saturating rations to larval scallop, these diets could be ranked: HL C. simplex>LL C. simplex>HL P. lutheri>LL P. lutheri. In both phytoplankton species, HL-grown cells contained more of the short-chain saturated fatty acid (FA), 16:0 than LL-grown cells. Scallop growth rates were a significant function of the amounts (mg g-1 dry wt) and the proportions (as percentage of total FAs) of the FAs 14:0 and 14:0+16:0 (total saturated FAs) in their diet. The proximate biochemical composition of HL- versus LL-grown phytoplankton showed no significant differences in protein, total lipid, carbon, carbohydrate or nitrogen per cell which were consistently associated with the greater nutritional value of HL cells. In spite of this high variability in proximate composition, the larval growth rate was a significant function of the average carbon content, nitrogen content and cell volume of the phytoplankton cells. Increased amounts of the essential polyunsaturated FAs 20:5 3 and 22:6 3 in the phytoplankton were negatively correlated with larval scallop growth rates. Thus HL-grown phytoplankton cells were nutritionally superior to LL-grown cells. This nutritional superiority seems to be determined by the fatty acid composition of the cells which, in turn, is controlled by variation in irradiance. The general tendency of predator FA profiles to resemble that of their prey was not observed in larvae fed P. lutheri. The much greater amounts of 18:4 3, 20:5 3, and 22:6 3 FA in P. lutheri relative to C. simplex were not evident in the scallop larvae fed these cells.  相似文献   

5.
6.
Three species of phytoplankton grown at high (HL) or low light (LL) were fed as saturating rations to laboratory-reared larval Crassostrea gigas. Larval C. gigas fed diets of HL grown Chaetoceros gracilis and HL grown Isochrysis aff. galbana grew faster than those fed LL grown cells of the same phytoplankton species. Faster growth of C. gigas larvae was consistently associated with increases in the percent composition of short chain saturated fatty acids (FA) 14:0+16:0 in the HL grown cells. There were no consistent and significant differences between HL and LL grown phytoplankton cells in their content of carbon, nitrogen, protein, lipid or carbohydrate. Intraspecific increases in percent composition of essential fatty acids (EFAs), 20:53 and 22:63, in the phytoplankton were not associated with improvements in the growth or survival of the oyster larvae. Oyster larvae fed diets of Phaeodactylum tricornutum with a relatively high proportion of EFAs grew more slowly than those fed C. gracilis. In this experiment the proportion of dietary EFA 20:53 was negatively correlated with oyster growth rates. The faster growing oyster larvae contained relatively more of the FAs 14:0+16:0 which may be useful as measures of larval oyster condition. After a diet of one phytoplankton species for ca. 10 d, oyster larvae acquired distinctive FA profiles resembling that of their phytoplankton prey.  相似文献   

7.
Sporophytes of the brown algaLaminaria saccharina (L.) Lamour grown at 15°C contained significantly more chlorophylla (chla) than did similar plants grown at 5°C. The increase in chla in 15°C plants was due to increased numbers of photosystem II reaction centes, and possibly to increased photosynthetic unit size, compared with 5°C plants. These changes were associated with increased values (photosynthetic efficiencies) in 15°C-grownL. saccharina relative to 5°C-grown plants. The changes in together with reduced respiration rates allowed 15°C-grownL. saccharina to achieve net photosynthesis and light-saturated photosynthesis at a lower photon fluence rate (PFR) than 5°C plants when both groups were assayed at the same temperature (15°C). The photon fluence rates necessary to reach the compensation point and achieve light-saturated photosynthesis (I c andI k , respectively) increased with increasing incubation temperature inL. saccharina grown at both 5 and 15°C. However, acclimation responses to growth temperature compensated for the short-term effect of temperature onI c andI k . Consequently, plants grown at 5 and 15°C were able to achieve similar rates of light-limited photosynthesis, and similarI c andI k values at their respective growth temperatures. These responses are undoubtedly important for perennial seaweeds such asL. saccharina, which frequently grow in light-limited habitats and experience pronounced seasonal changes in water temperature.Please address all correspondence and requests for reprints to I.R. Davison  相似文献   

8.
Accumulation of waterborne cadmium in Littorina littorea, Mytilus edulis and Carcinus maenas (collected in 1988 and 1989 around the island of Funen, Denmark) was investigated in a matrix of salinities (10 to 30) and calcium concentrations (2.9 to 8.9 mM Ca++). Cadmium accumulation rates in soft parts of L. littorina, soft parts and shells of M. edulis and whole bodies and exoskeletons of C. maenas decreased with increasing salinity. Changes in the calcium concentrations accounted for 72% of the salinity effect on cadmium accumulation rates in L. littorina, whereas calcium concentrations had little or no effect on cadmium accumulation in M. edulis. Cadmium accumulation in the whole body of C. maenas was affected equally by calcium concentrations and total salinity, whereas accumulation in the exoskeleton was mainly affected by changes in total salinity. Individual variability in cadmium accumulation in the organs of C. maenas was greater than the variation attributable either to changes in ambient calcium concentrations or total salinity. An appreciable amount of the inter-individual variability in the cadmium accumulation in all three species was correlated with wet:dry weight ratios of the tissues and size of the organisms.  相似文献   

9.
Inhibition of photosynthesis and cell division by polychlorinated biphenyls (PCBs) was studied using 7 marine phytoplankton species representing 4 algal classes. PCB concentrations as low as 1.0 g l-1 reduced cell division of Thalassiosira pseudonana 3H and Isochrysis galbana. Both photosynthesis and cell division of T. pseudonana 3H, Chaetoceros socialis, Skeletonema costatum, T. pseudonana 13-1, Monochrysis, lutheri and I. galbana were inhibited at a PCB concentration of 10.0 g l-1. The effects on photosynthesis were immediate and probably resulted in reduced rates of cell division. Interspecific differences in susceptibility were observed. These differences have significance with respect to primary production and the species composition of phytoplankton communities. The initial slopes of photosynthesis-irradiance (P-I) curves for the diatoms S. costatum and T. pseudonana 3H were reduced in the presence of PCBs. These results suggest that PCBs affect the photosynthetic light reactions.  相似文献   

10.
Calcification, photosynthesis and respiration of the scleractinian coral Astrangia danae were calculated from the changes in total alkalinity, pH, calculated total CO2, and oxygen concentration produced by colonies incubated in glass jars. A correction for changes in ammonia, nitrate and nitrite was taken into account and the method evaluated. The fluxes of oxygen and CO2 were highly correlated (r=0.99). The statistical error of alkalinity determinations was less than 10% of the changes observed in the slowest calcifying samples. Metabolism of polyparium alone was estimated by difference after removal of tissue and reincubation of bare corallum. Zooxanthellae concentration in the polyps was obtained from cell counts made on homogenates of polyp tissue. The calculated photosynthetic rate of the zooxanthellae in vivo was 25 mol O2 (108 cell)-1 h-1 at a light intensity of 120 Ein m-2 s-1. In corals having 0.5x109 zooxanthellae/dm2 of colony area up to 8% of the total photosynthesis was attributed to the corallum microcosm. Polyp respiration, photosynthesis, and CaCO3 uptake rates were all much higher than rates previously reported from A. danae, apparently because in these experiments the organisms were better fed. This increased photosynthesis in turn enhanced calcification still further. The symbiosis therefore appears to provide a growth advantage even to fed corals, under the conditions of these experiments.  相似文献   

11.
Four endosymbiotic diatoms were isolated from 2 species of larger foraminifera collected in the Red Sea and Hawaii. The photoadaptive responses of the cultured diatoms were measured at 312, 19 and 7 W cm-2. Two of the diatoms (Fragilaria shiloi and Nitzschia laevis), both isolated from Amphistegina lessonii, grew fastest at 312 W cm-2. The other two diatoms (N. valdestriata and N. panduriformis) which were isolated from Heterostegina depressa, grew best at 19 W cm-2. Of the four diatoms, F. shiloi grew best at high light levels. Also in F. shiloi, chlorophyll c content per cell was directly proportional to light intensity; in contrast chlorophyll a and carotenoids increased to maxima at 19 W cm-2. The chlorophyll a and c and carotenoid content of N. valdestriata were also maximal at 19 W cm-2. Photosynthetic rates, measured by respirometry, suggested that the diatoms were photoinhibited at higher light intensities and did well at moderately low light intensities (175W cm-2). The photocompensation points of all 4 diatoms were about 2% of the light available in the spring at 1-m depth at Elat on the Red Sea. At Elat the photocompensation point would lie between 40 and 50 m if the algae were free in nature. The amount of attenuation of light by the shells of the host has not yet been measured. Presumably photocompensation of the algae within hosts is reached at depths less than 40 m.  相似文献   

12.
Nannochloris atomus was maintained in exponential growth at photon flux densities (PFD) from 400 to 700 nm, ranging from 10 to 200 mol m-2 s-1. Growth was lightsaturated at PFDs in excess of 100 mol m-2 s-1, with a mean light-saturated growth rate at 23 °C of 1.5×10-5s-1 (1.2 d-1). The light-limited growth rates extrapolated to a compensation PFD for growth that was not significantly different from zero, although no changes in cell numbers were observed in a single culture incubated at a PFD of 1.0 mol m-2s-1. Dark-respiration rates were independent of PFD, averaging 1.7×10-6 mol O2 mol-1 C s-1 (0.14 mol O2 mol-1 C d-1). The maximum photon (quantum) efficiency of photosynthesis was also independent of PFD, with a mean value of 0.12 mol O2 mol-1 photon. The chlorophyll a-specific light absorption cross-section ranged from 3 to 6×10-3 m2 mg-1 chl a and was lowest at low PFDs due to intracellular self-shading of pigments associated with high cell-chlorophyll a contents. The C:chl a ratio increased from 10 to 40 mg C mg-1 chl a between PFDs of 14 and 200 mol m-2 s-1. These new observations for N. atomus are compared with our previous observations for the diatom Phaeodactylum tricornutum in terms of an energy budget for microalgal growth.  相似文献   

13.
Photoadaptations of zooxanthellae living within the deep water coral Leptoseris fragilis taken from the Gulf of Aqaba (Red Sea) were studied. Specimens-collected in summer 1988 between 110 and 120 m depth —were transplanted to 70 and 160 m. At each depth individuals were exposed in their natural growth position (oral side facing the surface) or in a reverse growth position (oral side facing the bottom). After 1 yr of exposure the corals were collected and the zooxanthellae were isolated. As a function of the availability of light with depth and growth position several algal parameters showed changes which are related to photoadaptations. The relatively low density of zooxanthellae of 0.15x106 cellsxcm-2 at a natural growth depth of 116 m decreased to 0.0034x106 cellsxcm-2 (2%) at 160 m in specimens growing with a natural orientation. In corals with a downward-facing oral surface at the same depth (160 m) only degenerated algae could be observed. With respect to depth dependence the volume of the algae decreased from 728 m3 at 116 m to 406 m3 at a depth of 160 m and the content of pigments increased. The augmentation of peridinin per cell was low (two times at 160 m compared to 116 m). Chlorophyll a and in particular chlorophyll c 2 concentrations per cell were enhanced. Compared to natural amounts at 116 m, chl a was five times and chl c 2 eight times higher at 160 m. At all depths the chl c 2 content per cell was higher than for chl a. The formation of chl a/chl c 2 complexes as light harvestor is discussed. Light harvesting, with chl c 2 prevailing may be explained as a special type of chromatic adaptation of L. fragilis in a double sense: (1) in the habitat light short wavelengths predominate. This light can be directly absorbed with pigments such as chl a and chl c 2. (2) Host pigments absorb visible violet light and transform these wavelengths, less suitable for photosynthesis, into longer ones by means of autofluorescence. The emitted longer wavelengths fit the absorption maxima of the algal pigments. Thus the host supports photosynthesis of his symbionts. Corals exposed at 160 m depth with a downward facing oral surface were alive after 1 yr and the host wavelength transforming pigment system was still present, but zooxanthellae were absent or degenerated. The light field at 160 m seems therefore to be critical: the combined photoadaptations of host and symbionts, allowing photosynthesis under barren light conditions, seem to be exhausted. In L. fragilis the photoadaptive strategies of host and symbionts cooperate harmoniously. In addition, the adaptations are interlocked with the particular light situation of the habitat with respect to light quantity and quality. The cooperation of physical and organismic parameters examplifies how evolution and, in particular, coevolution has led to optimal fitness.  相似文献   

14.
The photosynthetic characteristics of prokaryotic phycoerythrin-rich populations of cyanobacteriaSynechococcus spp. and larger eukaryotic algae were compared at a neritic frontal station (Pl), in a warm-core eddy (P2), and at Wilkinson's Basin (P3) during a cruise in the Northwest Atlantic Ocean in the summer of 1984.Synechococcus spp. numerically dominated the 0.6 to 1 m fraction, and to a lesser extent the 1 to 5 m size fractions, at most depths at all stations. At P2 and P3, all three size categories of phytoplankton (0.6 to 1 m, 1 to 5 m, and >5 m) exhibited similar depth-dependent chages in both the timing and amplitude of diurnal periodicities of chlorophyllbased and cell-based photosynthetic capacity. Midday maxima in photosynthesis were observed in the upper watercolumn which damped-out in all size fractions sampled just below the thermocline. For all size fractions sampled near the bottom of the euphotic zone, the highest photosynthetic capacity was observed at dawn. At all depths, theSynechococcus spp.-dominated size fractions had lower assimilation rates than larger phytoplankton size fractions. This observation takes exception with the view that there is an inverse size-dependency in algal photosynthesis. Results also indicated that the size-specific contribution to potential primary production in surface waters did not vary appreciably over the day. However, estimates of the percent contribution ofSynechococcus spp. to total primary productivity in surface waters at the neritic front were significantly higher when derived from short-term incubator measurements of photosynthetic capacity rather than from dawn-to-duskin situ measurements of carbon fixation. The discrepancy was not due to photoinhibitory effects on photosynthesis, but appeared to reflect increased selective grazing pressure onSynechococcus spp. in dawn-to-dusk samples. Low-light photoadaptation was evident in analyses of the depth-dependency ofP-I parameters (photosynthetic capacity,P max; light-limited slope, alpha;P max alpha,I k ; light-intensity beyond which photoinhibition occurs,I b ) of the > 0.6 m communities at all three stations and was attributable to stratification of the water column. There was a decrease in assimilation rates andI k with depth that was associated with increases in light-limited rates of photosynthesis. No midday photoinhibition ofP max orI b was observed in any surface station. Marked photoinhibition was detected only in the chlorophyll maximum at the neritic front and below the surface mixed-layer at Wilkinson's Basin, where susceptibility to photoinhibition increased with the depth of the collected sample. The 0.6 to 1 m fraction always had lower light requirements for light-saturated photosynthesis than the > 5 m size fraction within the same sample. Saturation intensities for the 1 to 5 m and 0.6 to 1 m size fractions were more similar whenSynechococcus spp. abundances were high in the 1 to 5 m fraction. The > 5 m fraction appeared to be the prime contributor to photoinhibitory features displayed in mixed samples (> 0.6 m) taken from the chlorophyll maxima. InSynechococcus spp.-dominated 0.6 to 1 and 1 to 5 m size fractions, cellular chlorophylla content increased 50- to 100-fold with depth and could be related to increases in maximum daytime rates of cellularP max at the base of the euphotic zone. Furthermore, the 0.6 to 1 m and > 5 m fractions sampled at the chlorophyll maximum in the warm-core eddy had lower light requirements for photosynthesis than comparable surface samples from the same station. Results suggest that photoadaptation in natural populations ofSynechococcus spp. is accomplished primarily by changing photosynthetic unit number, occuring in conjuction with other accommodations in the efficiency of photosynthetic light reactions.  相似文献   

15.
Marine Synechococcus spp. are sufficiently abundant to make a significant contribution to primary productivity in the ocean. They are characterized by containing high cellular levels of phycoerythrin which is highly fluorescent in vivo. We sought (Jan.–Apr., 1984) to determine the adaptive photosynthetic features of two clonal types of Synechococcus spp., and to provide a reliable physiological basis for interpreting remote sensing data in terms of the biomass and productivity of this group in natural assemblages. It was found that the two major clonal types optimize growth and photosynthesis at low photon flux densities by increasing the numbers of photosynthetic units per cell and by decreasing photosynthetic unit size. The cells of clone WH 7803 exhibited dramatic photoinhibition of photosynthesis and reduction in growth rate at high photon flux densities, accompanied by a large and significant increase in phycoerythrin fluorescence. Maximal photosynthesis of cells grown under 10–50 E m-2 s-1 was reduced by 20 to 30% when the cells were exposed to photon flux densities greater than 150 E m-2 s-1. However, steady-state levels of photosynthesis maintained for brief periods under these conditions were higher than those of cells grown continuously at high photon flux densities. No photoinhibition occurred in clone WH 8018 and rates of photosynthesis were greater than in WH 7803. Yields of in-vivo phycoerythrin fluorescence under all growth photon flux densities were lower in clone WH 8018 compared to clone WH 7803. Since significant inverse correlations were obtained between phycoerythrin fluorescence and Pmax and for both clones grown in laboratory culture, it may be possible to provide a reliable means of assessing the physiological state, photosynthetic capacity and growth rate of Synechococcus spp. in natural assemblages by remote sensing of phycoerythrin fluorescence. Poor correlations between phycoerythrin fluorescene and pigment content indicate that phycoerythrin fluorescence may not accurately estimate Synechococcus spp. biomass based on pigment content alone.  相似文献   

16.
Chl a and C-normalized pigment ratios were studied in two dinophytes (Prorocentrum minimum and Karlodinium micrum), three haptophytes (Chrysochromulina leadbeateri, Prymnesium parvum cf. patelliferum, Phaeocystis globosa), two prasinophytes (Pseudoscourfieldia marina, Bathycoccus prasinos) and the raphidophyte Heterosigma akashiwo, in low (LL, 35 μmol photons m−2 s−1) and high light (HL, 500 μmol photons m−2 s−1). Pigment ratios in LL and HL were compared against a general rule of photoacclimation: LL versus HL ratios ≥1 are typical for light-harvesting pigments (LHP) and <1 for photoprotective carotenoids. Peridinin, prasinoxanthin, gyroxanthin-diester and 19′-butanoyloxy-fucoxanthin were stable chemotaxonomic markers with less than 25% variation between LL versus HL Chl a–normalized ratios. As expected, Chls exhibited LL/HL to Chl a ratios >1 with some exceptions such as Chl c 3 in P. globosa and MV Chl c 3 in C. leadbeateri. LL/HL to Chl a ratios of photosynthetic carotenoids were close to 1, except Hex-fuco in P. globosa (four-fold higher Chl a ratio in HL vs LL). Although pigment ratios in P. globosa clearly responded to the light conditions the diadinoxanthin-diatoxanthin cycle remained almost unaltered at HL. Total averaged pigment and LHP to C ratios were significantly higher in LL versus HL, reflecting the photoacclimation status of the studied species. By contrast, the same Chl a-normalized ratios were weakly affected by the light intensity due to co-variation with Chl a. Based on our data, we suggest that the interpretation of PPC and LHP are highly dependent on biomass normalization (Chl a vs. C).  相似文献   

17.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

18.
Gonyaulax polyedra Stein grown in increasingly nutrientlimited batch culture undergoes the following changes (collectively termed aging): there is a decline in the intracellular concentrations of carbon, nitrogen and photosynthetic pigments; nitrate reductase activity decreases; rates of respiration and photosynthesis fall; and cell division virtually ceases (accompanied in bright light by a decrease in the volume of individual cells). The effect of light intensity on these aging events was tested by growing cells in either bright or dim light. The bright light (330 E m-2 s-1) was enough to saturate photosynthesis and the dim light (80 E m-2 s-1) was low enough to induce significant shade adaptation of photosynthesis without lowering growth rate. At both light intensities, a decline in carbon and nitrogen content preceded or accompanied all other monitored changes, and the sequence of aging events was similar. However the onset of the decline in intracellular nutrients and photosynthetic rate in low-light cells was delayed by a least one cell division time (i.e., to twice the cell density) in comparison to cells under bright light. At both light levels, pigment-protein complexes of the photosynthetic apparatus began to break down after intracellular carbon and nitrogen had been depleted to a critically low level. The beginning of the drop in pigmentation signalled the end of log-phase growth. It is suggested that the greater pigmentation of low-light cells may represent a larger nutrient supply than found in bright-light cells and could increase the survival time of nutrient-stressed populations.  相似文献   

19.
Sea anemones (Aiptasia pulchella) containing zooxanthellae (Symbiodinium microadriaticum) were maintained in a long-term laboratory culture on a 12 h light (100 E m-2 s-1):12 h dark cycle. Photosynthetic oxygen production was measured for the symbiotic association and for freshlyisolated zooxanthellae. Light utilization efficiencies () were similar for both sets of zooxanthellae, suggesting negligible shading of zooxanthellae by animal tissue in this association. Whereas freshly-isolated zooxanthellae were photoinhibited at high irradiances (800 to 1 800 E m-2 s-1), zooxanthellae in the host continued to function at photosynthetic capacity. Time of day may influence photosynthetic measurements in symbiotic organisms, as it was found that photosynthesis in A. pulchella followed a diel periodicity at both light-saturating (1 200 E m-2 s-1) and subsaturating (150 E m-2 s-1) irradiances. There was a peak period of photosynthesis between 12.00 and 14.00 hrs. Light stimulated dark respiration rates of A. pulchella. Dark respiration of sea anemones increased somewhat towards the end of the light cycle and was always greater after exposure to high irradiances.  相似文献   

20.
The effects of temperature, salinity, growth irradiance and diel periodicity of incident irradiance on photosynthesis-irradiance (P-I) relationships were examined in natural populations of sea-ice microalgae from McMurdo Sound in the austral spring of late 1984. Both P m b (photosynthetic rate at optimum irradiance) and b (initial slope or P-I curve) were temperature-dependent reaching optimal rates at approximately +6° and +2°C, respectively. P-I relationships showed little difference at 20 and 33 S; however, no measurable photosynthesis by sea-ice microalgae was detected in a 60 S solution of brine collected from the upper layers of congelation ice. Although diel periodicity characteristic of the under-ice light field appeared to have little effect on P-I relationships, changes in growth irradiance had a profound effect. An increase in growth irradiance from 7 E m-2 s-1 (ambient) to 35 or 160 E m-2 s-1 resulted in a transient three-fold increase in P m b and I k (index of photoadaptation) during the first four days, followed by a sharp decline. The effects of these environmental factors on ice algal photosynthesis may influence the distribution of microalgae in sea-ice environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号