首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
Photosynthesis and respiration in Ahnfeltia plicata (Huds.) Fries (Gigartinales) was measured in a seawater flowthrough system at different temperatures, salinities and photon flux densities (PFD). The exchanges of dissolved oxygen and inorganic carbon were continuously recorded with an oxygen probe and a pH electrode measuring variation in CO2–HCO 3 - equilibrium as pH changes. Highest apparent photosynthesis at moderate photon flux density (PFD 50 E m-2 s-1) was found at 15°C and 33 S. Photosynthesis was measured up to PFD 500 E m-2 s-1 and no light saturation was documented. In the present experimental set-up, with continuous supply of fresh seawater, the number of limiting factors during photosynthesis measurements is reduced.  相似文献   

2.
Six mediterranean macroalgae were cultivated for more than 2 yr under shade culture conditions, after which light requirements for growth were investigated at 16±2°C. The saturation light levels for growth in the logarithmic phase were related to the bathymetric distribution of the algae on the shore. The eulittoral to supralittoral red alga Bangia atropurpurea was saturated at a photon fluence rate of 71 mol photons m-2 s-1, the upper sublittoral to eulittoral brown algae Scytosiphon lomentaria, Colpomenia peregrina and Kuckuckia spinosa and the sublittoral brown alga Stictyosiphon soriferus at 39 to 71 mol photons m-2 s-1, and the deep-water alga Choristocarpus tenellus at 19 mol photons m-2 s-1. The minimum light requirements for growth of B. atropurpurea and C. tenellus were determined by observing length increase for 56 d under limiting light conditions. The compensation and minimum irradiances required for growth of B. atropurpurea were 0.5 and 1 mol photons m-2 s-1 respectively. The corresponding values for C. tenellus were 0.15 to 0.28 and 0.5 mol photons m-2 s-1 respectively. C. tenellus was the siowest-growing species tested at saturating light conditions, but it grew faster than B. atropurpurea at 1 mol photons m-2 s-1. Both B. atropurpurea and C. tenellus were able to survive 56 d in darkness, but only the latter grew under darkness in the first 14 d.  相似文献   

3.
Rainwater concentrations of either ammonium or nitrate were sufficient to stimulate chlorophyll a (chl a) production in bioassay experiments using Gulf Stream surface water collected off North Carolina during the summer of 1991. Previous studies primarily examined inshore waters and did not address the impact of rainwater ammonium. An increase in chl a occurred within 1 d of the addition of synthetic rainwater (2 or 5% rainwater, 98 or 95% seawater) containing up to 10 M ammonium; this increase was followed by a decrease in chl a the following day. A similar response to nitrate addition (5% addition of 20 M nitrate rain) was observed. In separate experiments, natural rainwater having nitrate and ammonium concentrations less than those in the experimental synthetic rain yielded a greater chl a response than synthetic rain when added at similar dilutions (0.5 to 5.0% rain). The maximum dissolved inorganic nitrogen concentration in the enriched seawater in these bioassays was 1.8 M; prior to enrichment the maximum was < 0.4 M. Bioassay experiments begun 2 d after a major storm event (sustained NE winds with gusts to 13 m s-1 and ca. 390 mol m-2 inorganic nitrogen deposition from rain) showed a chl a increase in response to addition of natural rainwater, but not to synthetic rainwater with similar dissolved inorganic nitrogen concentration. These results suggest that phytoplankton stimulants, in addition to nitrate and ammonium, exist in natural rain but not in the synthetic rain used in these experiments.  相似文献   

4.
Nanoplankton and picoplankton primary production has been studied at two oceanic stations in the Porcupine Sea-bight and at one shelf station in the Celtic Sea. At both sites, low wind conditions in June and July 1985 resulted in greatly reduced vertical turbulent mixing and a secondary, temporary thermocline developed in what is usually a well-mixed surface layer; as a result, there was physical separation of the phytoplankton within two zones of the surface mixed layer. The photosynthetic characteristics of three size fractions (>5 m, <5 to >1 m and <1 to >0.2 m) of phytoplankton populations from the two zones have been measured. Phytoplankton was more abundant at the oceanic stations and chlorophyll a values were between 1.3 and 2.2 mg chlorophyll a m-3, compared with 0.3 to 0.6 mg chlorophyll a m-3 at the shelf station; at both stations, numbers of cyanobacteria were slightly higher in the lower zone of the surface mixed layer. There was no effect of the temporary thermocline on the vertical profiles of primary production and most phtosynthesis occurred in the surface 10 m. Photosynthetic parameters of the three size fractions of phytoplankton have been determined; there was considerable day-to-day variation in the measured photosynthetic parameters. Assimilation number (P m B ) of all >5 m phytoplankton was lower for the deeper than for the surface populations, but there was little change in initial slope (a B ). The small oceanic nanoplankton (<5 to >1 m) showed changes similar to the >5 m phytoplankton, but the same size fraction from the shelf station showed changes that were more like those shown by the picoplankton (<1 m) viz, little change in P m B but an increase in a B with depth. Values of a B were generally greater for the picoplankton fraction than for the larger phytoplankton, but values of adaptation parameter (I k )(=P m B /) were not always less. There was little evidence to support the hypothesis that these populations of picoplankton were significantly more adapted to low light conditions than the larger phytoplankton cells. When photosynthetic parameters of the picoplankton were normalised to cell number (P m C /a C ) rather than chlorophyll a, P m C was comparable to other published data for picoplankton, but a C was much lower. The maximum doubling time of the picoplankton at saturating irradiance is calculated to be ca. 8.5 h for the oceanic population and ca. 6.2 h for the shelf population.  相似文献   

5.
Photosynthetic parameters for netplankton (>22 m) and nanoplankton (<22 m) varied over similar ranges but exhibited different seasonal and geographic patterns of variation. Nanoplankton a was relatively constant (0.06 mg C [mg Chl · h]-1 [E m-2 s-1]-1), but P m B (mg C [mg Chl · d]-1) was an exponential function of temperature independent of nutrient concentration and vertical stability in the euphotic zone. The temperature function gives a P m B of 24 at 25°C for nanoplankton growing in an estuarine environment characterized by high nutrient concentrations and a shallow, stratified euphotic zone. Variations in netplankton a and P m B were less predictable and were not correlated with temperature, nutrients or vertical stability. Chain forming diatoms with small cells were able to achieve high (0.10 to 0.15) and P m B (20 to 24) that were 3 to 5 times higher than large-celled diatoms and dinoflagellates were able to achieve.  相似文献   

6.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

7.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

8.
Growth and photosynthetic properties of the marine dinoflagellate Amphidinium carterae Hulbert were examined under continuous illumination in batch cultures at four different irradiances between 2 and 150 E m-2 s-1. The slope of both cell- and Chl a-based photosynthesis versus the irradiance curves was greatest for cells grown at 15 E m-2 s-1. The relative Chl a values cell-1 were 1, 1.5 and 2 for cultures grown at 150, 80 and 15 E m-2 s-1, respectively. A low-temperature (-196°C) fluorescence technique was used to examine cells for photoinhibiton. Photoinhibition was greatest for cells grown at 150 E m-2 s-1. However, significant photoinhibition of this species was noted even at 80 E m-2 s-1. No significant difference in the fluorescence pattern was found between cells grown at 2 and 15 E m-2 s-1. Time course studies indicate that photoinhibition may occur within 2 h following exposure to 350 E m-2 s-1 in cells grown at 15 E m-2 s-1 and is reversible when light levels are lowered within 4 h. The ecological significance of phytoplankton unable to cope with excess photosynthetic excitation energy is discussed.  相似文献   

9.
Adult Elasmopus rapax, collected from the eastern coast of Venezuela in 1990, were exposed to seawater containing various CdCl2 concentrations ranging from 0.25 to 5.5 mol l-1. The 48-h and 96-h LC50 values obtained were 4.0 and 1.6 mol Cd l-1, respectively. In amphipods exposed to 1 mol Cd l-1 for up to 240 h, the apparent rate of cadmium uptake was higher in dead animals (most of which had molted during the preceding 24 to 48 h) than in those which survived throughout the treatments without molting. Thus, whole-body cadmium content reached 1.74 mol g-1 dry weight (dw) in the former and only 0.85 mol g-1 dw in the latter; the higher body Cd-load may have caused the increased mortality observed in molters. On exposure to cadmium levels above 0.5 mol l-1 the oxygen consumption rate of non-molters decreased from 2.2 to about 1.5 ml O2 g-1 dw h-1 over the first 24 h, remaining unchanged thereafter. The results place E. rapax among the most sensitive marine organisms yet studied concerning cadmium toxicity, and emphasize the usefulness of the Amphipoda as bioindicators and research tools for bioassays.  相似文献   

10.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

11.
Growth characteristics and nutrient uptake kinetics were determined for zooxanthellae (Gymnodinium microadriaticum) in laboratory culture. The maximum specific growth rate (max) was 0.35 d-1 at 27 °C, 12 hL:12 hD cycle, 45 E m-2 s-1. Anmmonium and nitrate uptake by G. microadriaticum in distinct growth phases exhibited Michaelis-Menten kinetics. Ammonium half-saturation constants (Ks) ranged from 0.4 to 2.0 M; those for nitrate ranged from 0.5 to 0.8 M. Ammonium maximum specific uptake rates (Vmax) (0.75 to 1.74 d-1) exceeded those for nitrate (0.14 to 0.39 d-1) and were much greater than the maximum specific growth rate (0.35 d-1), suggesting that ammonium is the more significant N source for cultured zooxanthellae. Ammonium and nitrate Vmax values compare with those reported from freshly isolated zooxanthellae. Light enhanced ammonium and nitrate uptake; ammonium inhibited nitrate uptake which was not reported for freshly isolated zooxanthellae, suggesting that physiological differences exist between the two. Knowledge of growth and nutrient uptake kinetics for cultured zooxanthellae can provide insight into the mechanisms whereby nutrients are taken up in coral-zooxanthelae symbioses.Contribution No. 1515 from the University of Maryland Center for Environmental and Estuarine Studies, Chesapeake Biological Laboratory, Solomons, Maryland 20688-0038, USA  相似文献   

12.
Effects of high irradiance on photosynthetic characteristics were examined in sporophytes of the kelp Laminaria saccharina Lamour. from 1992 to 1994. Exposure to high irradiance (700 mol photons m-2s-1) for 1 h at optimal temperature (12°C) caused a 40 to 60% decline in photosynthetic efficiency (alpha), quantum yield, and the ratio of variable to maximum chlorophyll fluorescence (Fv/Fm), an indicator of Photosystem II efficiency. Although the photoinhibition effects were partly attributable to protective mechanisms, a concurrent increase in minimal fluorescence (Fo) indicated damage to Photosystem II reaction centers. The magnitude of photoinhibition was proportional to irradiance and duration; however, Fv/Fm was significantly reduced after exposure to irradiances as low as 40 to 50 mol photons m-2s-1 for 1 h, or to 700 mol photons m-2s-1 for only 5 min. In contrast, photosynthetic capacity (Pmax) was affected only at much higher irradiance. Superoptimal temperatures up to 24°C did not exacerbate high-light effects. At 25°C, however, alpha and Pmax were more susceptible to photoinhibition than at lower temperatures. Recovery from photoinhibition was examined by following Fv/Fm and Fo for 24 h after exposure to high light. Recovery of Fv/Fm was fastest during the first 1 to 3 h, and slowed or ceased after 6 to 12 h, while recovery of Fo was relatively constant over 12 h. Dithiothreitol, which blocks formation of energy-dissipating xanthophylls, reduced both the initial rate and extent of recovery. Chloramphenicol, which blocks chloroplast-encoded protein synthesis, had little effect on initial rates of recovery, but stopped recovery after 3 h. Thus, L. saccharina appears to rely on the xanthophyll cycle to protect the photosynthetic apparatus, and reversal of this protective mechanism causes the rapid initial recovery in Fv/Fm. Longterm recovery depends on repair of damaged reaction centers. Both the rate and extent of recovery were temperature-dependent. The initial rate was higher at 18 to 22°C than at 12°C, but the extent of recovery over 24 h declined with increasing temperature. High temperatures, therefore, appear to enhance protective mechanisms, but disrupt repair processes. L. saccharina from Long Island Sound, an ecotype adapted to low light and high temperature, showed slightly but consistently greater effects of photoinhibition than plants from the Atlantic coast of Maine, but exhibited faster recovery at superoptimal temperatures.  相似文献   

13.
The distribution of cyanobacteria in the surface waters of the North Sea was measured during July 1987. Numbers of cyanobacteria ranged from 2.5x106 to 1.7x108 cells 1-1. In the majority of stations, cyanobacterial numbers were highest in the near-surface water and a subsurface maximum was found at only one station. The distribution of 14C among the end-products of photosynthesis was determined for picoplankton (<1 m) and other phytoplankton >1 m throughout the North Sea. The majority of label was found in the protein fraction of both picoplankton and >1 m phytoplankton; incorporation into lipids and polysaccharides plus nucleic acids was much lower. We interpret the large incorporation into protein to be a consequence of nutrient limitation of these natural assemblages. Photosynthetic parameters of the two size fractions were also determined. Assimilation number (P m B ) and initial slope were greater for the picoplankton fraction than for phytoplankton >1 m but there was no evidence of significant photoinhibition of either fraction at irradiances up to 1 000 E m-2 s-1.  相似文献   

14.
Under conditions of natural irradiance, the development and decline of a flagellate-dominated phytoplankton population was followed in a coastal North Atlantic pond over a 3 d period in summer 1986. Irradiance negatively affected phytoplankton biomass estimated as chlorophyll a, which decreased during the day at photosynthetically available radiation (PAR) levels above 600 to 1000 mol m-2s-1; chlorophyll a increased at PAR values below this threshold. In addition, an inverse relationship was found between changes in chlorophyll a and changes in dissolved inorganic nitrogen, indicating synthesis of nitrogenous biomass mainly at night and degradation mainly during the day, with intense exchanges of material between the particulate and dissolved nitrogen fractions. The natural abundance of 13C in particulate matter increased initially, and then remained constant, and was controlled mainly by the ratio -carboxylases activity: ribulose biphosphate carboxylase activity. The hypothesis that the latter enzyme is broken down under high irradiance and is partly responsible for increases in external dissolved nitrogen was rejected.  相似文献   

15.
The physiological condition, determined as the ammonia excretion rate (V NH 4 + ), total lipid level and lipid class composition, of two deposit-feeding benthic amphipods, Monoporeia (=Pontoporeia) affinis and Pontoporeia femorata, was studied from 12 opensea stations in the northern Baltic Sea between 24 May and 11 June 1993. The M. affinis populations can be geographically grouped according to their physiological condition: (1) eastern Gulf of Finland, with moderate lipid level (mean 24.4% of dry wt) and high V NH 4 + (45.2 mol NH 4 + g-1 dry wt d-1); (2) Bothnian Sea, wigh high lipid level (34.5%) and low V NH 4 + (24.6 mol NH 4 + g-1 dry wt d-1); and (3) Bothnian Bay, with low lipid level (15.2%) and high V NH 4 + (44.3 mol NH 4 + dry wt d-1). A similar pattern could be observed also in the level of triacylglycerols and the neutral-to-polar lipid ratio. P. femorata, the dominating species in the western Gulf of Finland, showed variable station-specific excretion rates (22.3 to 43.0 mol NH 4 + g-1 dry wt d-1) and lipid levels (23.4 to 30.4%). The spatial variability in the weight-specific V NH 4 + of M. affinis could not be explained by the differences in the size of individuals, lipid level or lipid class composition; this emphasizes the significance of the effects of spatially differing nutritional conditions, which manifest themselves as different modes of metabolic energy production and different intensities of energy storage. In addition, the potential contribution of the amphipod populations to benthic nitrogen mineralization was estimated; in May to June, the NH 4 + release of different populations ranged from 12 to 237 mol NH 4 + m-2d-1. In general, populations with high abundance and/or biomass release the greatest amounts of NH 4 + , but the values are modified by the physiological condition of the individuals.  相似文献   

16.
The coralline alga Phymatolithon calcareum was dredged from 13 m in the Kattegatt, Baltic Sea, in December, 1980, and its rate of calcification was measured by 45Ca++-uptake methods. Light-saturated calcification rates at 5°C ranged from 15.8 g CaCO3 g-1 dry wt h-1 for the basal parts of the plants to 38.7 g CaCO3 g-1 dry wt h-1 for the tips. These age gradients were not apparent when calcification rates were expressed on the basis of surface area. Experiments with salinity (10, 20, 30) and temperature (0°, 5°, 10°, 20°C) indicated that optimum conditions for calcification were at 30 S and at temperatures above 10°C. Salinity had a greater influence on calcification rate than did temperature, and there was a positive relationship between salinity and calcification rate at all temperatures. In 6 mo old cultures, salinity was again the important factor, with all plants remaining healthy at 30 except those at the highest temperature (20°C). These trends, and the low calcification rates at 10S (4.6 g CaCO3 g-1 dry wt h-1 at 5°C to 8.6 g CaCO3g-1 dry wt h-1 at 20°C) suggest that low salinity may be the explanation for the general absence of P. calcareum from the brackish waters of the Baltic Sea. Short-term experiments in which salinity was kept constant while Ca++ concentration was altered, and experiments in which salinity was varied and Ca++ concentration kept constant, suggest that it is the calcium ion concentration and not salinity per se which affects calcification rates.  相似文献   

17.
The shortterm (10–22 d) effect of Zn, Hg, Cu, Cd, Pb, and Ni on the length growth of Mytilus edulis is studied. Significant reductions of growth rate was found at 0.3 g Hgl-1, 3 g Cul-1, 10 g Znl-1, and 10 g Cdl-1 added to the local sea water, while concentrations of up to 200 gl-1 of Pb and Ni had no effect on the growth. With exposure to Cu and Zn, there was a linear reduction in growth rate with increasing metal concentration up to about 6 g Cul-1 and 100 g Znl-1. Above these levels, growth stopped with Cu, while with Zn it was stabilized at about 20% of control growth. When Hg and Cd were added, a curvilinear relationship between growth and metal concentration is indicated. With Hg, growth rate is nearly zero above 3–4 g Hgl-1, while the growth rate was 50% of control after 10 d of exposure to 100 g Cdl-1. At 2 g Cdl-1 there was a significant stimulation of length increase. Observed EC50-values for growth were 0.3–0.4 g Hgl-1, 3–4 g Cul-1, 60 g Znl-1, and 100 g Cdl-1.  相似文献   

18.
The photosynthesis–irradiance response of Ecklonia radiata (C. Agardh) J. Agardh, a common kelp in the temperate southern hemisphere, was investigated in situ throughout the year and across a depth profile at West Island, South Australia. Temperature and irradiance environment altered throughout the year, varying at 3 m between 14–20°C and 279–705 mol photons m–2 s–1. Photosynthetic capacity (Pm) varied throughout the year between 177–278 mol O2 g–1 dry wt h–1 at 3 m and 133–348 mol O2 g–1 dry wt h–1 at 10 m. The irradiance required for sub-saturation of photosynthesis (Ek) varied between 97–152 and 81–142 mol photons m–2 s–1 for 3 m and 10 m respectively, and the respiration rate varied between 15–36 and 13–20 mol O2 g–1 dry wt h–1 for 3 m and 10 m. A clear seasonal change in photokinetic parameters was detected and provided strong evidence for a seasonal acclimation response. During winter an increase in the efficiency of light utilisation at low irradiance () was accompanied by a decrease in both Ek and that required for photosynthetic compensation. Pm also increased during the winter and autumn months and respiratory requirements decreased. These changes enable E. radiata to display an optimal photosynthetic performance throughout the year despite significant changes in the surrounding environment.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.
Photosynthetic performance in the kelp Laminaria solidungula J. Agardh was examined from photosynthesis irradiance (P-I) parameters calculated from in situ 14C uptake experiments, using whole plants in the Stefansson Sound Boulder Patch, Alaskan Beaufort Sea, in August 1986. Rates of carbon fixation were determined from meristematic, basal blade, and second blade tissue in young and adult sporophytes. Differences in saturating irradiance (I k, measured as photosynthetically active radiation, PAR), photosynthetic capacity (P max), and relative quantum efficiency () were observed both between young and adult plants and between different tissue types. I k was lowest in meristematic tissue (20 to 30 E m–2 s–1) for both young and adult plants, but consistently 8 to 10 E m–2 s–1 higher in young plants compared to adults in all three tissues. Average I k for non-meristematic tissue in adult plants was 38 E m–2 s–1. Under saturating irradiances, young and adult plants exhibited similar rates of carbon fixation on an area basis, but under light limitation, fixation rates were highest in adult plants for all tissues. P max was generally highest in the basal blade and lowest in meristematic tissue. Photosynthetic efficiency () ranged between 0.016 and 0.027 mol C cm–2 h–1/E m–2 s–1, and was highest in meristematic tissue. The relatively lower I k and higher exhibited by L. solidungula in comparison to other kelp species are distinct adaptations to the near absence of light during the eight-month ice-covered period and in summer when water turbidity is high. Continuous measurement of in situ quantum irradiance made in summer showed that maximum PAR can be less than 12 E m–2 s–1 for several days when high wind velocities increase water turbulence and decrease water transparency.The Univeristy of Texas Marine Science Institute Contribution No. 695  相似文献   

20.
In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (g l–1) and in situ production rates (g C l–1 d–1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 m fraction, 38% in the 2 to 5 m size fraction, and the remainder in size classes >5 m. Carbon-specific growth rates (k), as doublings d–1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d–1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m–3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号