首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The performance assessment of safety barriers is essential to find vulnerable elements in a safety barrier system. Traditional performance assessment approaches mainly focus on using several static indicators for quantifying the performance of safety barriers. However, with the increasing complexity of the system, emerging hazards are highly uncertain, making it challenging for the static indicators to assess the performance of safety barriers. This paper proposes a resilience−based performance assessment method for safety barriers to overcome this problem. Safety barriers are classified according to their functions first. The dynamic Bayesian network (DBN) is then introduced to calculate the availability function under normal and disruption conditions. The ratio of the system's availability, when affected by the disruption, to the initial availability, is used to determine the absorption capacity of the system. The ratio of the quantity of availability recovery to the total quantity of system represents the adaptation and restoration capacity of the system. The system's resilience is represented by the sum of absorption, adaptation, and restoration capacities. The wax oil hydrogenation process is used to demonstrate the applicability of the proposed methodology.  相似文献   

2.
High-pressure gaseous methane release is a relevant safety-related problem mainly in the Oil and Gas industry. As well documented, the reason for these safety concerns is connected with the severe consequences of the domino effect subsequent to the possible ignition. In risk assessment activities, estimation of the damage area is of primary importance in order to draw up proper safety guidelines. To do this, loss prevention specialists use quick and well-established numerical tools (i.e., integral models) in their daily activities. However, the presence of an obstacle in the flow field of the jet (e.g., the ground) is a more probable situation to deal with. It is known that integral models fail in this kind of scenario, leading to unreliable predictions. Hence, the present work investigates how an industrial ground surface influences the LFL cloud size of a horizontal high-pressure methane jet. An innovative quick procedure is proposed allowing to determine the height below which the ground begins to influence the LFL cloud size and the extent of such influence. Therefore, this procedure allows practitioners to establish when integral models can be used and when not to use them, and also provides a simple and reliable alternative to their use. These analytical instruments are derived from an extensive computational fluid dynamics analysis performed with Ansys Fluent 19.0.  相似文献   

3.
Identification of the leakage of hazardous gases plays an important role in the environment protection, human health and safety of industry production. However, lots of current optimization algorithms, such as particle swarm optimization (PSO) and Grey Wolf Optimizer (GWO), suffer from poor global optimization capability and estimation accuracy. In this work, a hybrid differential evolutionary and GWO (DE-GWO) algorithm is proposed. Tested by simulation cases and Prairie Grass emission experimental data, DE-GWO shows higher estimation accuracy than GWO. Compared with the other four optimization algorithms, DE-GWO exhibits finer robust stability under different population sizes, fewer iterations, as well as higher estimation accuracy with fewer search agents. Importantly, simulation results demonstrate that DE-GWO is more suitable to apply in the scene with a small number of sensors. Therefore, the proposed in this paper outperforms other optimization algorithms for the gas emission inverse problem. DE-GWO can provide reliable estimation towards gas emission identification and positioning, which shows huge potential as the data analysis module of real-time monitoring and early warning system.  相似文献   

4.
Although the diffusion of its storage and transport under liquefied conditions, nowadays it is common to have methane in gaseous form in several industrial applications. This leads to safety implications to be considered: hazards are linked to both the high-pressure at which the gas is kept and to its flammability. Scenarios where flammable jets impact an obstacle are of paramount importance because of their possible occurrence. Following a numerical approach, literature shows up that their assessment can be reliably performed by means of only Computational Fluid Dynamics tools. However, despite the improvements of computing power, Computational Fluid Dynamics costs still limit its use in daily risk analysts’ activities. Therefore, considering an accidental jet-obstacle scenario of industrial interest, the present work investigates how a pipe rack can influence the development of a high-pressure methane jet. Based on a Computational Fluid Dynamics analysis, main achievements of this work are a simple criterion able to identify the situations where the pipe rack does not influence the high-pressure methane jet behavior, therefore allowing to identify the scenarios where simpler models can be used (i.e., analytical correlations known for the free jet situation), and, if present, a simple analytical relationship that roughly predicts the influence of the pipe rack without the need of performing complex Computational Fluid Dynamics simulations.  相似文献   

5.
6.
Computer-aided molecular design (CAMD) technique is a powerful tool for the design of molecules that meet a set of desirable properties. In most of the CAMD problems, the molecular physical and thermodynamic properties are often selected as the target properties, while safety and health aspects were not taken into consideration. However, certain chemical substances may cause adverse effects to human's health after prolonged and repeated exposure. Therefore, in order to ensure that the generated molecule does not bring harm and health-related risks to the consumers, it is crucial to incorporate both inherent safety and health into the existing CAMD techniques. In this work, a novel chemical product design methodology has been developed to integrate both safety and health aspects into the CAMD framework presented by a single optimisation model. The measurement of safety and health indicators are based on the molecular properties that have impact on both of these aspects. Each property is assigned with an index or penalty value based on the degree of potential hazards. A molecule with a higher index value has a higher hazard level and vice versa. Hence, a molecule that satisfies the target properties and has a low penalty value will be selected as the most reasonable choice. This new approach ensures that a product that possesses the desirable properties, and at the same time meets the safety and health criteria, is produced. A case study on the solvent design for gas sweetening process has been carried out to determine the optimal molecule.  相似文献   

7.
For an accident involving a large-scale internal floating-roof tank with 28.4 m diameter and filled with 4600 m3 gasoline, the actual behavior of the gasoline fire and the fire-fighting strategies that were applied to it were analyzed in terms of the heat release rate, burning rate, and regression rate. During the accident, the initial fire suppression strategy failed and the gasoline was moved to an external tank. A total of 2800 m3 gasoline was burned for 17 h with a resulting heat release rate of 1475 MW. The long duration of the fire burning was attributed to the burning surface of the gasoline, which was not covered with foam at the beginning of the fire using the active foam fire-extinguishing system due to damage to one of the foam chambers. The average regression rate of the gasoline was 0.16 m/h after 8 h of burning and 0.35 m/h when the fire was completely suppressed.  相似文献   

8.
Over the last few decades, the concept of inherent occupational health has gained increasing attention to reduce occupational hazards that may adversely impact workers’ health. In order to assess occupational hazards in the chemical process, different inherent occupational health assessment methods have been developed at the early stages of process development and design. The methods in the order of process information availability – ranging from the detailed piping and instrumentation diagrams to a simple sketch of process concepts are the: occupational health index (OHI), health quotient index (HQI) and inherent occupational health index (IOHI). This paper proposes systematic heuristic frameworks to assist process designers and engineers in assessing and reducing inherent occupational health hazards or risks based on process information availability. Strategies for reducing health hazards or risks in the OHI, HQI and IOHI methods based on inherently safer design (ISD) keywords of minimization, substitution, moderation and simplification are included in this study. It is worth mentioning that the proposed frameworks act as guidelines for design engineers in systematically selecting the appropriate index and methodology to assess and reduce health hazards/risks based on the availability of the process information. A case study is solved to illustrate the proposed framework.  相似文献   

9.
In the current practice, safety assessment is conducted once the process design has been completed. At this stage of design, the freedom to change the conceptual design is very limited and whatever strategies to be implemented will only control the hazard. This paper reports on the development of inherent safety index known as a process stream index (PSI) for inherent safety level assessment at preliminary design stage from the perspective of an explosion. The aim for PSI is to calculate, compare and prioritize the level of inherent safety of process streams during simulation work that influences the explosion. By prioritizing the streams based on the potential for the explosion, the design engineers can easily identify the critical streams to be considered for improvement in order to avoid or minimize explosion hazards. An enhancement technique to reflect the contribution of the individual components in the mixture is introduced, which provide significant contribution to the ranking of inherent safety level of process streams. The assessment of inherent safety level using PSI is demonstrated by case studies of HYSYS simulation for Acrylic Acid Plant and Natural Gas Liquid (NGL) plant.  相似文献   

10.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

11.
Introduction: Evidence from the global construction industry suggests that an unacceptable number of safety hazards remain unrecognized in construction workplaces. Unfortunately, there isn’t a sufficient understanding of why particular safety hazards remain unrecognized. Such an understanding is important to address the issue of poor hazard recognition and develop remedial interventions. A recent exploratory effort provided anecdotal evidence that workers often fail to recognize safety hazards that are expected to impose relatively lower levels of safety risk. In other words, the research demonstrated that the underlying risk imposed by a safety hazard can affect whether a hazard will be recognized or not. Method: The presented research focused on empirically testing this preliminary finding. More specifically, the study tested the proposition that Construction workers are more likely to recognize safety hazards that impose higher levels of safety risk than those that impose relatively lower levels of safety risk. The research goals were accomplished through a number of steps. First, a set of 16 construction case images depicting a variety of construction operations that included a number of known safety hazards was presented to a panel of four construction safety experts. The experts were tasked with examining each of the known safety hazards and providing a rating of the relative safety risk that the individual hazards impose. Having obtained an estimate of the underlying safety risk, a hazard recognition activity was administered to 287 workers recruited from 57 construction workplaces in the United States. The hazard recognition activity involved the examination of a random sample of two construction case images that were previously examined by the expert panel and reporting relevant safety hazards. Results: The results of the study provided support for the proposition that workers are more likely to recognize hazards that impose relatively higher levels of safety risk. Practical Applications: The findings of the study can be leveraged to improve existing hazard recognition methods and develop more robust interventions to address the issue of poor hazard recognition levels.  相似文献   

12.
Occupational health and safety represents a set of technical, medical, legal, psychological, pedagogical and other measures with the aim to detect and eliminate hazards that threaten the lives and health of employees. These measures should be applied in a systematic way. Therefore, the aim of this study is to review occupational health and safety legislation in Serbia and the requirements that airports should fulfill for Occupational Health and Safety Assessment Series certification. Analyzing the specificity of airport activities and injuries as their outcomes, the article also proposes preventive measures for the health and safety of employees. Furthermore, the airport activities which are the most important from the standpoint of risks are defined, as the goals for occupational health and safety performance improvement.  相似文献   

13.
14.
The growing scale and complexity of process industries have brought safety, health, and environmental issues to the forefront. As a result, proactive risk reduction strategies (RRSs) are commonly employed to address these issues by reducing the frequency or mitigating the consequences of potential incidents. Among these strategies, inherent safety, which is a proactive measure of loss prevention and risk management, is considered to be the most effective method. This review aims to provide a comprehensive analysis of RRSs for achieving inherency, as well as techniques for evaluating the performance of inherent safety, health, and environmental aspects. Background information is presented, including the development and implementation of the inherently safer process design, as well as the approaches for achieving inherently healthier and environmentally friendlier processes. Subsequently, the execution approaches and practical applications of other RRSs are discussed to highlight the distinctiveness and benefits of inherent safety. Next, this study examined the characteristics of inherency assessment tools (IATs) based on available information at different process stages. Furthermore, the evaluation methods and historical development of IATs are investigated from the perspectives of safety, occupational health, and environmental considerations, followed by a statistical analysis of IATs. It is concluded that the no-chemical hazards-based IATs have not been extensively studied yet, which may improve the safety level of process plants from the perspective of comprehensive inherency risk reduction. As a way forward, future research opportunities are proposed to promote the implementation of greater optimized risk management.  相似文献   

15.
The concept of inherently safer design was introduced to design a fundamentally safer process so that hazards can be avoided or minimized rather than controlled or managed. The ideology has later been extended to the environmental, but not health criteria due to its complicated underlying principles. Even though health risk methods are already established, majority are for existing plants assessment. Early consideration of health aspect starting from process design stage however, has received much less attention. This paper introduces a simple graphical method to evaluate the inherent occupational health hazards of chemical processes during the R&D stage. A survey was conducted to identify the important health parameters for the graphical method development, involving nine world inherent safety and health experts. Based on their input, process mode, material volatility, operating pressure and chemical health hazard (toxicity and adverse effect) are the significant factors affecting inherent health hazards of chemical processes. The choice of parameters was bounded by the information availability at this stage. The method was applied on six routes to methyl methacrylate and ten routes to acetic acid. The parameters were plotted for each subprocess of the alternative routes. The ‘healthiest’ route was selected based on thorough hazards assessment across all the subprocesses. The first case study reveals the tertiary butyl alcohol as the ‘healthiest’ one as it poses relatively lower, or at least comparable hazards to the other routes due to exposure and health impacts. Meanwhile the acetic acid case study indicates ethanol oxide and ethyl oxide based routes as the inherently healthier as they operate at lower operating pressure besides posing comparable hazards level for the other three parameters, compared to the other routes. The case studies show that the inherent occupational health of a chemical process can already be evaluated easily in the R&D stage with the simple graphical method proposed.  相似文献   

16.
The concept of inherent safety is important in developing an inherently safer and user-friendly process. This paper discusses a new integrated approach of computer-aided product design and inherent safety assessment. Computer-aided Molecular Design (CAMD) approach was utilized in this work to identify potential alternative to n-hexane, the widely used industrial solvent in extracting residual palm oil from pressed palm fibre. The formulation of solvent mixtures was optimized to meet the targeted physical properties before being tested using the Soxhlet Extraction method. Inherent safety assessment to assess the solvent's flammability, toxicity, reactivity, and explosiveness was conducted on the new solvent mix, Mixture 1 (n-hexane + ethanol), Mixture 2 (n-hexane + acetone) and Mixture 3 (n-hexane + n-butanol). It was found that Mixture 1 and 3 are safer than n-hexane and able to extract more oil than n-hexane and Mixture 2. However, the utilization of the solvent is dependent on the end product from the residual palm oil.  相似文献   

17.
制定适合企业自身发展的职业安全健康方针至关重要,然而目前这方面的研究相对较少。本文收集了国内27家、国外10家知名企业的职业安全健康方针,统计分析了国内外职业安全健康方针在形式和内容上的区别与联系。通过定性分析和定量研究,得出国外企业职业安全健康方针的共性特点和国内企业职业安全健康方针的最常见组合模式。理论联系实际,将我国《职业安全健康管理体系规范(》GB/T28001-2004)中方针的编写要求与研究结论相结合,探讨在新形势下,如何制定企业职业安全健康方针的方法。  相似文献   

18.
Government agencies regularly use the argument that ‘safety pays’ as a way of motivating employers to attend to occupational health and safety. This paper looks at the effectiveness of this argument in the case of catastrophic hazards. It suggests that, while it may be true that safety pays in an abstract sense, this is irrelevant unless it can be shown that safety pays for relevant decision makers. All too often it does not. The article illustrates its claims by drawing on the literature on the Zeebrugge, Bhopal and Piper Alpha disasters, as well as on a study of a mine disaster in Australia.  相似文献   

19.
The bioprocessing industry is regarded as one of the fastest growing sectors with an estimated compound annual growth rate of 8.6%. The global market for biopharmaceuticals is projected to rise to a market value of USD 727.1 billion by 2025. Due to the unique nature of bioprocessing industries wherein micro-organisms are employed to manufacture the desired products, these processes are prone to additional hazards such as biological hazards and dust explosion amongst others. This necessitates the need to review the existing research in the fields of biotechnology and bioprocessing to reduce/eliminate these hazards and pave the path towards a safer bioprocessing industry. The study involves developing a framework comprising of studying the recent technologies that reduce/eliminate these hazards involved in the bioprocessing industries that include dust explosions, loss of containment of toxic chemicals, loss of containment of biohazard/active product ingredient, fire, and explosion and mapping these technologies with respect to inherent safety principles that include substitution, minimization, moderation and simplification with an overall objective of minimizing the risk associated with bioprocesses and moving towards an inherently safer bioprocessing industry.  相似文献   

20.
劳动安全卫生管理体系要素中的“方针”和“组织”   总被引:2,自引:0,他引:2  
全面管理原理是建立和运行劳动安全卫生管理体系的最重要的原则之一。其他原则在文中也简要地说明了。这些原则是组织的价值观和哲学的体现,并决定组织的安全卫生方针。安全卫生文化是组织的价值观、理念、能力和行为方式的产物,是人们的行事方式,在劳动安全卫生管理体系要素之一的“组织”中被体现出来,表现在四个方面,即:控制——管理人员的责任关系,协作——工人参与,通讯联络——共识和共同行动,能力——培训和专家顾  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号