首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
Quantitative Risk Assessment (QRA) has been a very popular and useful methodology which is widely accepted by the industry over the past few decades. QRA is typically carried out at a stage where complete plant has been designed and sited. At that time, the opportunity to include inherent safety design features is limited and may incur higher cost. This paper proposes a new concept to evaluate risk inherent to a process owing to the chemical it uses and the process conditions. The risk assessment tool is integrated with process design simulator (HYSYS) to provide necessary process data as early as the initial design stages, where modifications based on inherent safety principles can still be incorporated to enhance the process safety of the plant. The risk assessment tool consists of two components which calculate the probability and the consequences relating to possible risk due to major accidents. A case study on the potential explosion due to the release of flammable material demonstrates that the tool is capable to identify potential high risk of process streams. Further improvement of the process design is possible by applying inherent safety principles to make the process under consideration inherently safer. Since this tool is fully integrated with HYSYS, re-evaluation of the inherent risk takes very little time and effort. The new tool addresses the lack of systematic methodology and technology, which is one of the barriers to designing inherently safer plants.  相似文献   

2.
As a proactive safeguard, inherent safety has been regarded as the top hierarchy for loss prevention and risk management due to its salient features in eliminating or significantly reducing risks at source rather than mitigating them by add-on protections. Simultaneously, various assessment tools have been developed for ranking and selecting inherently safer designs or modifications. However, there still lacks a metric that can systematically incorporate various hazardous factors, which may hinder most industries from utilizing it to a full extent. To address this limitation, this work developed a Systematic Inherent Safety Metric (SISM) for measuring the inherently safer modifications. Firstly, the conceptual framework of SIS was proposed based on 5M1E (man, machine, material, method, measurement, and environment). Subsequently, analytic hierarchy process and fuzzy comprehensive evaluation were adapted to conduct risk identification and assessment. Finally, taking chlorine liquefaction process as a case study, the applicability and efficacy of SIS were validated based on PDCA (plan-do-check-action) cycle. The results show that the SISM value has improved from the relatively dangerous (RD) to the relatively safe (RS) after implementing SIS, thus demonstrating that the revised design is inherently safer than the base design.  相似文献   

3.
4.
Conventional hazard evaluation techniques such as what-if checklist and hazard and operability (HAZOP) studies are often used to recognise potential hazards and recommend possible solutions. They are used to reduce any potential incidents in the process plant to as low as reasonably practicable (ALARP) level. Nevertheless, the suggested risk reduction alternatives merely focus on added passive and active safety systems rather than preventing or minimising the inherent hazards at source through application of inherently safer design (ISD) concept. One of the attributed reasons could be the shortage of techniques or tools to support implementation of the concept. Thus, this paper proposes a qualitative methodology that integrates ISD concept with hazard review technique to identify inherent hazards and generate ISD options at early stage of design as proactive measures to produce inherently safer plant. A modified theory of inventive problem solving (TRIZ) hazard review method is used in this work to identify inherent hazards, whereby an extended inherent safety heuristics tool is developed based on established ISD principles to create potential ISD options. The developed method namely Qualitative Assessment for Inherently Safer Design (QAISD) could be applied during preliminary design stage and the information required to apply the method would be based on common process and safety database of the studied process. However, user experiences and understanding of inherent safety concept are crucial for effective utilisation of the QAISD. This qualitative methodology is applied to a typical batch reactor of toluene nitration as a case study. The results show several ISD strategies that could be considered at early stage of design in order to prevent and minimise the potential of thermal runaway in the nitration process.  相似文献   

5.
Over the years, a number of high-profile laboratory accidents involving severe injuries, fatalities, and economic losses have been reported, prompting a significant increase in efforts towards laboratory safety. However, the dominant safety measures rely excessively on add-on safeguards such as sprinklers and respirators and pay little attention to reducing the hazardous factors at their sources. This study introduced the inherent safety concept to minimize laboratory hazards and developed a dedicated implementation tool called Generic Laboratory Safety Metric (GLSM). The Traditional Laboratory Safety Checklist (TLSC) was first used to represent the safety indicators, and then the Precedence Chart (PC) and Bayesian Networks (BN) methods were used to reconcile the safety indicators to develop the GLSM. The developed GLSM was subsequently demonstrated through a case study of a university laboratory. The results revealed that the safety level increased from 2.44 to 3.52 after the risk-based inherently safer retrofitting, thus creating laboratory conditions with a relatively satisfactory safety level. This work presented a set of generic solutions to laboratory retrofitting towards inherent safety with a novel GLSM as the implementation tool. The proposed GLSM would contribute to risk quantification and identification of key risk factors for assigning targeted and fundamental safety measures to achieve inherently safer laboratories.  相似文献   

6.
The accomplishments of inherent safety in the field of loss prevention thus far are impressive due to its scientific philosophy: reducing risks at source rather than adding engineered and procedural protections. Generally, the implementation of inherent safety can be done through a cohesive set of fourteen principles elucidated by Kletz and Amyotte. This work, guided by the fourteen principles, presents a systematic review on the implementation methodologies of inherent safety. Firstly, PRISMA procedure was adopted to select eligible literatures according to inclusive and exclusive criteria. After obtaining the selected literatures, the preference, level of application, and gaps in using these principles were critically analyzed. Of the fourteen principles, intensification, substitution, attenuation, simplification, limitation of effects, and avoidance of knock-on effects are preferable to implementing inherent safety in chemical process. Although the remaining principles are also potentially useful, they are not commonly used due to their costs and complexities of implementation. Overall, this work presents a complete spectrum to look across the implementation methodologies of inherent safety and concludes with some holistic and inclusive approaches as future research recommendations.  相似文献   

7.
Of the numerous inherent safety assessment tools, a dynamic metric capable of investigating and incorporating the temporal risk evolution when conducting Inherently Safer Modifications (ISMs) is yet to be established. To this end, this work developed a Dynamic Inherent Safety Metric (DISM) and validated its functionality and viability through a case study. Firstly, the Information-Flow-based Accident-causing Model (IFAM) was adapted to construct the topology of Bayesian Networks (BN). Then, Bayesian deductive reasoning was executed to do crucial risk identification by ranking posterior probabilities. Finally, risk-based ISMs were performed to address the relatively contributing risk factors. The case study results show that the fire and explosion risk decreased by approximately a third after implementing ISMs, thus demonstrating that the modified processing scenario could be inherently safer than the original processing scenario. The newly developed inherent safety metric (i.e., DISM) can assist in temporal risk identification and assessment, and it is expected to function as a novel assessment tool for measuring and comparing the inherent safeness before and after implementing ISMs with simultaneous considerations on the time-varying risk factors.  相似文献   

8.
Inherent safety is a proactive approach for hazard/risk management during process plant design and operation. It has been proven that, considering the lifetime costs of a process and its operation, an inherently safer approach is a cost-optimal option. Inherent safety can be incorporated at any stage of design and operation; however, its application at the earliest possible stages of process design (such as process selection and conceptual design) yields the best results.Although it is an attractive and cost-effective approach to hazard/risk management, inherent safety has not been used as widely as other techniques such as HAZOP and quantitative risk assessment. There are many reasons responsible for this; key among them are a lack of awareness and the non-availability of a systematic methodology and tools.The inherent safety approach is the best option for hazard/risk management in offshore oil and gas activities. In the past, it has been applied to several aspects of offshore process design and operation. However, its use is still limited. This article attempts to present a complete picture of inherent safety application in offshore oil and gas activities. It discuses the use of available technology for implementation of inherent safety principles in various offshore activities, both current and planned for the future.  相似文献   

9.
In the current practice, safety assessment is conducted once the process design has been completed. At this stage of design, the freedom to change the conceptual design is very limited and whatever strategies to be implemented will only control the hazard. This paper reports on the development of inherent safety index known as a process stream index (PSI) for inherent safety level assessment at preliminary design stage from the perspective of an explosion. The aim for PSI is to calculate, compare and prioritize the level of inherent safety of process streams during simulation work that influences the explosion. By prioritizing the streams based on the potential for the explosion, the design engineers can easily identify the critical streams to be considered for improvement in order to avoid or minimize explosion hazards. An enhancement technique to reflect the contribution of the individual components in the mixture is introduced, which provide significant contribution to the ranking of inherent safety level of process streams. The assessment of inherent safety level using PSI is demonstrated by case studies of HYSYS simulation for Acrylic Acid Plant and Natural Gas Liquid (NGL) plant.  相似文献   

10.
Many worlds' major process industry accidents are due to BLEVE such as at Feyzin, France, 1966 and San Juan Ixhuatepec, Mexico City, 1984. One of the approaches to eliminate or minimize such accidents is by the implementation of inherently safer design concept. This concept is best implemented where the consequence of BLEVE can be evaluated at the preliminary design stage, and necessary design improvements can be done as early as possible. Thus, the accident could be avoided or minimized to as low as reasonably practicable (ALARP) without resorting to a costly protective system. However, the inherent safety concept is not easy to implement at the preliminary design stage due to lack of systematic technique for practical application. To overcome these hurdles, this paper presents a new approach to assess process plant for the potential BLEVE at the preliminary design stage and to allow modifications using inherent safety principles in order to avoid or minimize major accidents. A model known as Inherent Fire Consequence Estimation Tool (IFCET) is developed in MS Excel spreadsheet to evaluate BLEVE impacts based on overpressure, radiation heat flux and missile effects. In this study, BLEVE impacts are the criteria used as the decision-making for the acceptability of the design. IFCET is integrated with iCON process design simulator for ease of data transfer and quick assessment of potential BLEVE during the design simulation stage. A case study was conducted to assess of potential BLEVE from a propane storage vessel at the design simulation stage using this new approach. The finding shows promising results that this approach has a potential to be developed as a practical tool.  相似文献   

11.
Implementing inherent safety throughout process lifecycle   总被引:3,自引:0,他引:3  
Inherent safety should be implemented as early as possible in the design life cycle, since the changes in process design are easier and cheaper the earlier they are done. The problem is, how to evaluate process alternatives in the terms of inherent safety in the early design phases, when much of the information is missing. In this paper the process life cycle phases and the possibilities of implementing and evaluating inherent safety are discussed. The applicability and accuracy of an inherent safety index method is presented by a case study.  相似文献   

12.
Four strategies can be used to achieve safety in chemical processes: inherent, passive, active and procedural. However, the strategy that offers the best results is the inherent safety approach, especially if it is applied during the initial stages of a project. Inherently Safer Design (ISD) permanently eliminates or reduces hazards, and thus avoids or diminishes the consequences of incidents. ISD can be applied using four strategies: substitution, minimization, moderation and simplification. In this paper, we propose a methodology that combines ISD strategies with Quantitative Risk Assessment (QRA) to optimize the design of storage installations. As 17% of major accidents in the chemical industry occur during the storage process and cause significant losses, it is essential to improve safety in such installations. The proposed method applies QRA to estimate the risk associated with a specific design. The design can then be compared to others to determine which is inherently safer. The risk analysis may incorporate complex phenomena such as the domino effect and possible impacts on vulnerable material and human elements. The methodology was applied to the San Juanico tragedy that occurred in Mexico in 1984.  相似文献   

13.
Over the last few decades, the concept of inherent occupational health has gained increasing attention to reduce occupational hazards that may adversely impact workers’ health. In order to assess occupational hazards in the chemical process, different inherent occupational health assessment methods have been developed at the early stages of process development and design. The methods in the order of process information availability – ranging from the detailed piping and instrumentation diagrams to a simple sketch of process concepts are the: occupational health index (OHI), health quotient index (HQI) and inherent occupational health index (IOHI). This paper proposes systematic heuristic frameworks to assist process designers and engineers in assessing and reducing inherent occupational health hazards or risks based on process information availability. Strategies for reducing health hazards or risks in the OHI, HQI and IOHI methods based on inherently safer design (ISD) keywords of minimization, substitution, moderation and simplification are included in this study. It is worth mentioning that the proposed frameworks act as guidelines for design engineers in systematically selecting the appropriate index and methodology to assess and reduce health hazards/risks based on the availability of the process information. A case study is solved to illustrate the proposed framework.  相似文献   

14.
IntroductionRisk management, a proactive process to identify and mitigate potential injury risks and implement control strategies, was used to reduce the risk of occupational injury in a fire department. The objective of this research was to study the implementation of the risk management process for future replication. A second objective was to document changes in fire personnel's knowledge, attitudes, and behaviors related to the selected control strategies that were implemented as part of the risk management process.MethodA number of control strategies identified through the risk management process were implemented over a 2-year period beginning in January 2011. Approximately 450 fire personnel completed each of the three cross-sectional surveys that were administered throughout the implementation periods. Fire personnel were asked about their awareness, knowledge, and use of the control strategies.ResultsFire personnel were generally aware of the control strategies that were implemented. Visual reminders (e.g., signage) were noted as effective by fire personnel who noticed them. Barriers to use of specific control strategies such as new procedures on the fireground or new lifting equipment for patient transfer included lack of knowledge of the new protocols, lack of awareness/access to/availability of the new equipment, and limited training on its use. Implementation challenges were noted, which limited self-reported adherence to the control strategies.ConclusionsFire personnel generally recognized the potential for various control strategies to manage risk and improve their health and safety; however, implementation challenges limited the effectiveness of certain control strategies. The study findings support the importance of effective implementation to achieve the desired impacts of control strategies for improving health and safety.Practical applicationsEmployees must be aware of, have knowledge about, and receive training in safety and health interventions in order to adopt desired behaviors.  相似文献   

15.
The concept of inherently safer design was introduced to design a fundamentally safer process so that hazards can be avoided or minimized rather than controlled or managed. The ideology has later been extended to the environmental, but not health criteria due to its complicated underlying principles. Even though health risk methods are already established, majority are for existing plants assessment. Early consideration of health aspect starting from process design stage however, has received much less attention. This paper introduces a simple graphical method to evaluate the inherent occupational health hazards of chemical processes during the R&D stage. A survey was conducted to identify the important health parameters for the graphical method development, involving nine world inherent safety and health experts. Based on their input, process mode, material volatility, operating pressure and chemical health hazard (toxicity and adverse effect) are the significant factors affecting inherent health hazards of chemical processes. The choice of parameters was bounded by the information availability at this stage. The method was applied on six routes to methyl methacrylate and ten routes to acetic acid. The parameters were plotted for each subprocess of the alternative routes. The ‘healthiest’ route was selected based on thorough hazards assessment across all the subprocesses. The first case study reveals the tertiary butyl alcohol as the ‘healthiest’ one as it poses relatively lower, or at least comparable hazards to the other routes due to exposure and health impacts. Meanwhile the acetic acid case study indicates ethanol oxide and ethyl oxide based routes as the inherently healthier as they operate at lower operating pressure besides posing comparable hazards level for the other three parameters, compared to the other routes. The case studies show that the inherent occupational health of a chemical process can already be evaluated easily in the R&D stage with the simple graphical method proposed.  相似文献   

16.
This paper discusses the enhancement of inherent safety review and its implementation in the chemical process development and design. The aim is to update and improve the existing inherently safer design review (ISDR) practices during design of chemical process plant by exploiting major accident cases from the U.S. Chemical Safety Board (CSB) and Failure Knowledge Database (FKD). Although the basic guidelines to conduct ISDR during design phase are available, however they are too general and incomplete. The review criteria and their best timing for application are still missing. This paper attempts to develop the accident-based ISDR for chemical process plant design. The proposed accident-based ISDR is supported with detail review criteria for each phase of process design. The timing of ISDR application is corresponding to the common design tasks and decisions made in the design project. Therefore, timely design review could be done at the specific design task and the findings help designer to make a correct decision making.  相似文献   

17.
基于模糊综合评价的化工工艺本质安全指数研究   总被引:1,自引:1,他引:0  
建立化工工艺的本质安全评价指标体系,包括可燃性、爆炸性、毒性、反应性、温度、压力、储量等7个指标。为解决前人指数法中的边界波动效应,采用模糊综合评价建立化工工艺本质安全评价指数模型,确定各指标的权重、危险分级及对各分级的隶属函数。以甲基丙烯酸甲酯的5条工艺路线为例进行分析,结论与前人提出的指数方法的评价结果相吻合,表明该指数方法可以用来进行化工工艺的本质安全评价,以指导设计初期的本质安全型工艺路线选择。  相似文献   

18.
The overall objective of the maintenance process is to increase the profitability of the operation and optimize the total life cycle cost without compromising safety or environmental issues. Risk assessment integrates reliability with safety and environmental issues and therefore can be used as a decision tool for preventive maintenance planning. Maintenance planning based on risk analysis minimizes the probability of system failure and its consequences (related to safety, economic, and environment). It helps management in making correct decisions concerning investment in maintenance or related field. This will, in turn, result in better asset and capital utilization.

This paper presents a new methodology for risk-based maintenance. The proposed methodology is comprehensive and quantitative. It comprises three main modules: risk estimation module, risk evaluation module, and maintenance planning module. Details of the three modules are given. A case study, which exemplifies the use of methodology to a heating, ventilation and air-conditioning (HVAC) system, is also discussed.  相似文献   


19.
天然气管道工程风险对策研究   总被引:3,自引:0,他引:3  
风险管理对策包括风险规避、风险控制与消减、风险自留和风险转移四个方面,风险管理的目标即是通过科学的风险管理策略使风险降到可以接受的水平。企业对风险的容忍程度除与风险控制的期望成本相关外,还与企业的风险偏好,以及政治、经济等外部环境因素相关。管道建设工程面临的风险因素复杂,可以从人的因素、物的因素、环境的因素和管理的因素四个方面进行识别和归类。各风险事件发生的町能性以及后果严重性各不相同,在管道建设工程风险管理中过程中要综合采用各种风险对策,使每一风险因素降低到企业所能够承受的水平,甚至可以采用改线绕过特定风险地域或保险转移的策略,使项日业主不再承担特定的风险责任。  相似文献   

20.
The chemical, pharmaceutical and other related process industries are characterized by inherently hazardous processes and activities. To ensure that considered risk management decisions are made it is essential that organizations have the ability to rank the risk profiles of their assets and operations. Current industry risk ranking techniques are biased toward the assessment of the risk potential of the asset or operation. Methodologies used to assess these risks tend to be engineering-based and include, for example, hazard identification and event rate estimation techniques. Recent research has associated lagging safety performance indicators with metrics of organizational safety climate. Despite the evidence suggesting their potential usefulness, organizational climate metrics have not yet been exploited as a proactive safety, health and environmental performance indicator or as an aid to relative risk ranking. This paper summarizes research that successfully produced a statistical model of organizational climate and its relationship to site significant injury frequency rates, allowing the relative risk ranking of sites based upon organizational climate metrics. The responses to an industrial organizational survey are examined for a pharmaceutical company's sites in the United Kingdom, Sweden and the United States. Projection to Latent Structures Analysis is performed on the survey responses. The resultant models are shown to be able to accurately model the site significant injury frequency rates. The organizational climate metrics that discriminate between the safety performance levels of different sites are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号