首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two bio-based polymers, cellulose diacetate (CDA) and starch, were used to prepare blends with reasonable properties and low cost. Due to the poor processing properties, starch was modified in the presence of glycerol and epoxidized soybean oil (ESO), and CDA was plasticized by triacetin (TA) and ESO, respectively. The morphologies of the blends with different amounts of modified starch (MST) were studied by scanning electron microscope (SEM), and the physical properties of the blends, including thermal stability, mechanical property, water and moisture resistance, were investigated. The equilibrium moisture absorption rates of the blends containing 30 and 50 wt% MST at 100 % of relative humidity(RH) were 9.4 and 15.0 %, respectively. SEM and DMA results demonstrated that CDA and MST had a certain extent of compatibility. Due to the partial plasticization of starch, the tensile strength of the blends was nearly not affected by the amount of MST. Even if 50 wt% MST was added, the tensile strength of the blend was as high as 24.7 MPa. The obtained blend containing 30 wt% MST can keep good mechanical properties at 50 % RH, and its tensile strength and elongation at break are 30.2 MPa and 3.6 %, respectively. All the results show that the CDA/MST blends have a potential as an environmental friendly material.  相似文献   

2.
The blends of polylactic acid plasticized with acetyl tributyl citrate (P-PLA) and thermoplastic wheat starch (TPS) were prepared by a co-rotating twin screw extruder and the effect of maleic anhydride grafted PLA (PLA-g-MA) content as reactive compatibilizer on blends compatibility through morphological, rheological and tensile properties of the blends was investigated. Considerable improvement in properties of P-PLA/TPS (70/30 w/w) blend with incorporating the optimum PLA-g-MA content of 4 phr was achieved as this blend exhibited better morphological and rheological properties with an increase by 158 and 276% in tensile strength and elongation at break, respectively, compared to the uncompatibilized blend. Also the thermal stability and moisture sorption properties of the blends as effected by TPS content were studied. Decreasing in thermal stability and increasing in equilibrium moisture content of the blends were observed with progressively increasing of TPS content. For prediction the moisture sorption behaviour of blends with various TPS contents at different relative humidity, the moisture sorption isotherm data were modeled by GAB (Guggenheim–Anderson–de Boer) model.  相似文献   

3.
Starch granules were modified with trisodium trimetaphosphate (TSTP) and characterized by P31-NMR, FTIR and DSC. Seventy-micron films were prepared from modified starch and polycaprolactone blends by solvent casting technique. Three different types of films—PCL (100% polycaprolactone), MOD-ST/PCL (50% modified starch and 50% polycaprolactone blend) and NONMOD-ST/PCL (50% nonmodified starch and 50% polycaprolactone blends)—were prepared, and their thermal, mechanical, and morphologic properties were investigated to show the increased performance of PCL with the addition of starch and also the effect of modification. It was observed that with the addition of starch the Young's modulus of polycaprolactone was increased and became less ductile, whereas tensile strength and elongation at break values decreased. Biodegradation of these films was inspected under different aerobic environments with the presence of Pseudomonas putida, activated sludge, and compost. It was observed that whereas P. putida had almost no effect on degradation during 90 days, with the presence of activated sludge, considerable deformation of films was observed even in the first 7 days of degradation. In a compost environment, degradation was even faster, and all polymer films were broken into pieces within first 7 days of degradation and no film remained after 15 days.  相似文献   

4.
This study has examined the mechanical properties of lightweight aggregate concrete with a density of 1800 kg/m3. The effects of the following parameters on the concrete properties have been analyzed: the pre-wetting time of the lightweight aggregate and the percentage of pulverized fly ash used as cementitious replacement material. The strength of the lightweight aggregate was found to be the primary factor controlling the strength of high-strength lightweight concrete. An increase in the cementitious content from 420 to 450 kg/m3 does not significantly increase the strength of lightweight aggregate concrete. The relationship between the flexural and compressive strength at 28 days can be represented by the equation fr=0.69/fck. The elastic modulus was found to be much lower than that of normal weight concrete, ranging from 15.0 to 20.3 GPa. The addition of PFA increases the slump and density of lightweight aggregate concrete.  相似文献   

5.
Methylenediphenyl diisocyanate was found to improve the interfacial interaction between poly(lactic acid)(PLA) and granular starch. The objective of this research was to study the effect of starch moisture content on the interfacial interaction of an equal-weight blend of wheat starch and PLA containing 0.5% methylenediphenyl diisocyanate by weight. Starch moisture (10% to 20%) had a negative effect on the interfacial binding between starch and PLA. The tensile strength and elongation of the blend both decreased as starch moisture content increased. At 20% moisture level, the starch granules embedded in the PLA matrix were observed to be swollen, resulting in poor strength properties and high water absorption by the blend.  相似文献   

6.
Reuse of thermosetting plastic waste for lightweight concrete   总被引:1,自引:0,他引:1  
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm(2) and 1395kg/m(3), respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.  相似文献   

7.
Use of waste ash from palm oil industry in concrete   总被引:1,自引:0,他引:1  
Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.  相似文献   

8.
The effects of a polymeric chain extender on the properties of bioplastic film made from blends of plasticized polylactic acid (p-PLA) and thermoplastic starch (TPS) were studied. Joncryl? ADR 4370S, a polymeric chain extender, was blended with TPS and p-PLA at a level of 1% (w/w). A co-rotating twin-screw extrusion process was used to prepare films with various ratios of TPS and p-PLA. Mechanical and physical properties of films, including film tensile properties, surface energy, moisture content, hydrophilicity, moisture sorption behaviour and thermal mechanical properties were determined. During extrusion, films enhanced by 1% Joncryl addition demonstrated more desirable and consistent qualities, such as smoother film edge and surface. Addition of Joncryl significantly improved film tensile strength, 0.2% offset yield strength, and elongation, especially evident with the 250% elongation of 70/30 (TPS/p-PLA) film. Total surface energy of films was not significantly influenced by addition of Joncryl. However, the polar contribution to the total surface energy of 70/30 (TPS/p-PLA) film increased after the addition of Joncryl. The study showed that blending TPS with p-PLA transformed TPS film from being highly hydrophilic to highly hydrophobic. On the other hand, addition of Joncryl had limited effects on moisture content, water solubility, glass transition temperature and moisture sorption behaviour of TPS/p-PLA blend films.  相似文献   

9.
This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.  相似文献   

10.
Elongation properties of extruded cornstarch were improved by blending with glycerol. Further blending of starch-glycerol with polyvinyl alcohol (PVOH) resulted in significant improvements in both tensile strength (TS) and elongation at break. Samples of starch-glycerol without PVOH equilibrated at 50% relative humidity had a TS of 1.8 MPa and elongation of 113%, whereas those containing PVOH had a TS and elongation of 4 MPa and 150%, respectively. Dynamic mechanical analysis (DMA) of starch-glycerol-PVOH blends showed that decreases in glass transition temperatures (T g values) were proportional to glycerol content. Scanning electron microscopy (SEM) of fractured surfaces revealed numerous cracks in starch-glycerol (80:20) samples. Cracks were absent in starch-glycerol (70:30) samples. In both blends, many starch granules were exposed at the surface. No exposed starch granules were visible in blends with added PVOH. Starch-glycerol samples incubated in compost lost up to 70% of their dry weight within 22 days. Addition of PVOH lowered both the rate and extent of biodegradation.  相似文献   

11.
Foam extrusion of biodegradable polyester [poly(butylene adipate-co-terephthalate) (PBAT)] and its blends with maleated thermoplastic starch (MTPS) using a chemical blowing agent was performed. The effect of MTPS and percentage of chemical blowing agent on various foam properties is discussed. In general, an increased amount of PBAT in the foams improves the properties of the foams. The foam samples were characterized by measurements of density, expansion ratio, specific length, compressive strength, resiliency, moisture sorption, and imaging using digital light microscopy. Density, expansion ratio, and specific length measurements show that the best characteristics of lowest density, highest expansion ratio, and highest specific length are exhibited by the PBAT samples. The compressive strength and foam density exhibit a power-law relationship. Greater amounts of PBAT in the samples increase the resiliency and decrease the steady state weight gain during moisture sorption. All samples show regions of unfoamed material when only 3% chemical blowing agent is used, but when 5 and 7% chemical blowing agent is used, the samples exhibit cells throughout the matrix.  相似文献   

12.
Injection molded specimens were prepared by blending poly (hydroxybutyrate-co-valerate) (PHBV) with cornstarch. Blended formulations incorporated 30% or 50% starch in the presence or absence of poly-(ethylene oxide) (PEO), which enhances the adherence of starch granules to PHBV. These formulations were evaluated for their biodegradability in natural compost by measuring changes in physical and chemical properties over a period of 125 days. The degradation of plastic material, as evidenced by weight loss and deterioration in tensile properties, correlated with the amount of starch present in the blends (neat PHBV < 30% starch < 50% starch). Incorporation of PEO into starch-PHBV blends had little or no effect on the rate of weight loss. Starch in blends degraded faster than PHBV and it accelerated PHBV degradation. Also, PHBV did not retard starch degradation. After 125 days of exposure to compost, neat PHBV lost 7% of its weight (0.056% weight loss/day), while the PHBV component of a 50% starch blend lost 41% of its weight (0.328% weight loss/day). PHB and PHV moieties within the copolymer degraded at similar rates, regardless of the presence of starch, as determined by 1H-NMR spectroscopy. GPC analyses revealed that, while the number average molecular weight (Mn) of PHBV in all exposed samples decreased, there was no significant difference in this decrease between neat PHBV as opposed to PHBV blended with starch. SEM showed homogeneously distributed starch granules embedded in a PHBV matrix, typical of a filler material. Starch granules were rapidly depleted during exposure to compost, increasing the surface area of the PHBV matrix.  相似文献   

13.
Injection-molded composites were prepared by blending PHBV5 with native cornstarch (30% and 50%) and with cornstarch precoated with PEO as a binding agent. These composites were evaluated for their biodegradability in municipal activated sludge by measuring changes in their physical and chemical properties over a period of 35 days. All composites lost weight, ranging from 45 to 78% within 35 days. Interestingly, the extent and rate of weight loss were quite similar in PHBV composites with no starch, with 30% starch, and with 50% starch. Weight loss was slowest in PHBV blends prepared with PEO-coated starch. For all samples, the weight loss was accompanied by a rapid deterioration in tensile strength and percentage elongation. The deterioration of these mechanical properties exhibited a relative rate of PHBV>starch-PHBV>PEO-coated starch-PHBV. Changes in starch/PHBV composition after biodegradation were quantified by FTIR spectroscopy. Increasing the starch content resulted in more extensive starch degradation, while the PHBV content in the blends became less susceptible to hydrolytic enzymes.The mention of firms names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over firms or similar products not mentioned. All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, marital status, or handicap.  相似文献   

14.
For resource reutilization, scrap tyres have long been investigated as an additive to concrete to form 'Rubcrete' for various applications and have shown promising results. However, the addition of rubber particles leads to the degradation of physical properties, particularly, the compressive strength of the concrete. In this study, a theoretical model was proposed to shed light on the mechanisms of decrease in compressive strength due to the addition of rubber particles as well as improvement in compressive strength through modification of particle surfaces. The literature suggests that the compressive strength can be improved by soaking the rubber particles in alkaline solution first to increase the inter-phase bonding between the rubber particles and cement. Instead, we discovered that the loss in compressive strength was due to local imperfections in the hydration of cement, induced by the addition of heterogeneous and hydrophobic rubber particles. Microscopic studies showed that the rubber particles disturbed the water transfer to create channels, which were prone to cracking and led to a loss in the compressive strength. Unexpectedly, no cracking was found along the surfaces of the rubber particles, indicating that the bonding strength between the rubber particles and cement phases was not the critical factor in determining the compressive strength. Therefore, a theoretical model was proposed to describe the water transfer in the Rubcrete specimens to explain the experimental data. In the model, the local water available for hydration (Q) is: Q = -A(slv)/6piv, where Q, A(slv), and v are mass flow rate (kg s(-1)), Hamaker constant (J), and dynamic viscosity (m2 s(-1)), respectively. By maximizing the quantity Q and, in turn, the Hamaker constant A(slv), the compressive strength could be improved. The Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that for the hydrated cement particles; the water transfer rate was lower in the presence of rubber particles because the Hamaker constant A(slv) for water film on rubber particle surfaces was smaller than that on the hydrated cement particles. Thus, the compressive strength of Rubcrete could be improved by increasing the Hamaker constant of the system. This was achieved by increasing the refractive indices of the solids (n(s)). The refractive indices of materials increase with increases in functional groups, such as OH and SH on the surface. The model provided a possible mechanism for the efficacy of treating rubber particles with NaOH in improving the compressive strength. By using NaOH solution treatment, an oxygen-containing OH group was formed on the rubber surface to increase the Hamaker constant of the system, leading to higher compressive strength. Based on this mechanism, a novel method for modification of the rubber particles was also proposed. In this process, the rubber particles were partially oxidized with hot air/steam in a fluidized bed reactor to produce the hydrophilic groups on the surface of the particles. Preliminary results obtained so far are promising in accordance with the theory.  相似文献   

15.
Continuing growth of biofuel industries is generating large amounts of coproducts such as distillers dried grains with solubles (DDGS) from ethanol production and glycerol from biodiesel. Currently these coproducts are undervalued, but they have application in the plastics industry as property modifiers. This research effort has quantified the effects on mechanical properties of adding DDGS and glycerol to a commercial thermoplastic starch (TPS). The methodology was to physically mix DDGS, as filler, with the TPS pellets and injection mold the blends into test bars using glycerol as a processing aid. The bars were then mechanically tested with blends from 0 to 65 %, by weight, of plasticized filler. The test bars were typically relatively brittle with little yielding prior to fracture with elongation between 1 and 3 %. The addition of glycerol enabled molding of blends with high levels of DDGS but did not increase strength. Any presence of filler decreased the tensile strength of the starch, and up to 30 % filler, the tensile strength drops about 15 %. The 20 and 50 % blends (without glycerol) have slightly greater stiffness than pure starch. With some other blends, the presence of plasticized filler degrades the tensile modulus with 35 % filler yielding about 1/3 the stiffness. Changes in the flexural modulus are much more pronounced as 20–25 % filled TPS has a 30 % increase in flexural stiffness. In terms of surface hardness, blends up to 60 % filler are within 20 % of the TPS baseline.  相似文献   

16.
Starch/Poly(vinylalcohol) blends in two different ratios (60:40 and 50:50) were prepared with glycerol as a plasticizer. Films were cast by a solution casting method. One set of films were filled with 10 wt% of bentonite clay and another set of films were crosslinked with epichlorohydrin in an alkaline medium. The prepared film samples were characterized with dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The presence of clay and crosslinking with epichlorohydrin was found to have considerable effect on the dynamic mechanical properties and thermal stability of the films. Intercomponent H-bonding between starch, Poly(vinylalcohol) and glycerol enhanced the thermal stability of the films. But incorporation of clay and crosslinking with epichlorohydrin enhanced the steric crowding and lowered the thermal stability of the films.  相似文献   

17.
The objective of this study was to investigate the properties of poly(vinyl alcohol)/chitosan nanocomposite films reinforced with different concentration of amorphous LCNFs. The properties analyzed were morphological, physical, chemical, thermal, biological, and mechanical characteristics. Oil palm empty fruit bunch LCNFs obtained from multi-mechanical stages were more dominated by amorphous region than crystalline part. Varied film thickness, swelling degree, and transparency of PVA/chitosan nanocomposite films reinforced with amorphous part were produced. Aggregated LCNFs, which reinforced PVA/chitosan polymer blends, resulted in irregular, rough, and uneven external surfaces as well as protrusions. Based on XRD analysis, there were two or three imperative peaks that indicated the presence of crystalline states. The increase in LCNFs concentration above 0.5% to PVA/chitosan polymer blends led to the decrease in crystallinity index of the films. A noticeable alteration of FTIR spectra, which included wavenumber and intensity, was obviously observed along with the inclusion of amorphous LCNFs. That indicated that a good miscibility between amorphous LCNFs and PVA/chitosan polymer blend generated chemical interaction of those polymers during physical blending. Reinforcement of PVA/chitosan polymer blends with amorphous LCNFs influenced the changes of Tg (glass transition temperature), Tm (melting point temperature), and Tmax (maximum degradation temperature). Three thermal phases of PVA/chitosan/LCNFs nanocomposite films were also observed, including absorbed moisture evaporation, PVA and chitosan polymer backbone structural degradation and LCNFs pyrolysis, and by-products degradation of these polymers. The addition of LCNFs 0.5% had the highest tensile strength and the addition of LCNFs above 0.5% decreased the strength. The incorporation of OPEFB LCNFs did not show anti-microbial and anti-fungal properties of the films. The addition of amorphous LCNFs 0.5% into PVA/chitosan polymer blends resulted in regular and smooth external surfaces, enhanced tensile strength, increased crystallinity index, and enhanced thermal stability of the films.  相似文献   

18.
Research on biodegradable materials has been stimulated due to concern regarding the persistence of plastic wastes. Blending starch with poly(lactic acid) (PLA) is one of the most promising efforts because starch is an abundant and cheap biopolymer and PLA is biodegradable with good mechanical properties. Poly(vinyl alcohol) (PVOH) contains unhydrolytic residual groups of poly(vinyl acetate) and also has good compatibility with starch. It was added to a starch and PLA blend (50:50, w/w) to enhance compatibility and improve mechanical properties. PVOH (MW 6,000) at 10%, 20%, 30%, 40%, 50% (by weight) based on the total weight of starch and PLA, and 30% PVOH at various molecular weights (MW 6,000, 25,000, 78,000, and 125,000 dalton) were added to starch/PLA blends. PVOH interacted with starch. At proportions greater than 30%, PVOH form a continuous phase with starch. Tensile strength of the starch/PLA blends increased as PVOH concentration increased up to 40% and decreased as PVOH molecular weight increased. The increasing molecular weight of PVOH slightly affected water absorption, but increasing PVOH concentration to 40% or 50% increased water absorption. Effects of moisture content on the starch/PLA/PVOH blend also were explored. The blend containing gelatinized starch had higher tensile strength. However, gelatinized starch also resulted in increased water absorption.  相似文献   

19.
The common biodegradable properties of polymer make them an excellent pair for blending, and the water solubility of polyvinyl alcohol (PVA) makes it easy to mix evenly with the starch. In this study, PVAs with different molecular weights were blended with various compositions of cross-linked starch (CLS) to explore the effects of molecular weight of PVA on the biodegradable characteristics of the PVA/starch blends. Comparing the biodegradability of all the various PVA/starch blends, a PVA was singled out from the PVA/starch blends of higher biodegradability. Further, the chosen PVA was then blended with the acid-modified starch (AMS) to systematically investigate the effects of the modified processing of starch on the biodegradable characteristics of the PVA/starch blends. Differential scanning calorimetry (DSC) analysis of PVA and PVA/starch specimens reveal that the Tm values of PVA/starch specimens reduce gradually as their CLS or AMS contents increase. After the CLS is blended in PVAs of different molecular weights, the tensile strength (??f) and elongation at break (??f) values of (P100S0)G20M1 specimen increase and simultaneously reduce, respectively, as their molecular weights of PVA increase from about 80,000 (PVABF-17) to 120,000 (PVABF-26). The ??f and ??f values of the PVA/modified-starch blends decrease with an increase in the modified starch contents. The ??f values of the PVA/AMS specimens decrease with an increase in the concentrations of hydrochloric acid. Comparing the ??f values of the PVA/CLS specimens with those of the PVA/AMS specimens, the ??f values of the PVA/CLS specimens are better than those of the PVA/AMS specimens. On the contrary, the ??f values of the PVA/AMS specimens are better than those of the PVA/CLS specimens. According to the biodegradability of all the PVA/starch blends, PVA with higher molecular weights displays higher biodegradability. The biodegradability of the PVA/modified-starch blends increase as the modified starch contents of the PVA/modified-starch blends increase. As evidenced by the results of the biodegradability test, the biodegradability of the PVA/modified-starch blends, therein PVA is blended with 1N AMS, shows better biodegradability. The result of bio-reaction kinetics experiment can evaluate the decomposition tendency of the PVA/starch blends up to any biodegradable rate under ambient environment. Using the kinetic model of the first order reaction, it is estimated that 16.20?years and 12.47?years will be needed for the PVABF-17/starch blends, containing 20 and 40% of CLS respectively, to be degraded up to 70% under ambient environment. In addition, it is 1.68?years for the PVABF-26 blends with the 40% 2N AMS under decomposition environment while it is 1.94?years for the 40% 1N AMS. Overall, the decomposition potential of PVA/AMS specimens is better than PVA/CLS specimens. Furthermore, the 1N(26P60AS40)100G20M1 specimen is coincidence the biodegradable material criteria of Environmental Protection Administration (EPA) of Taiwan.  相似文献   

20.
In this work, morphology, rheological and tensile properties of low-density polyethylene/linear low-density polyethylene/thermoplastic oxidized starch (LDPE/LLDPE/TPOS) blends are studied. The blends of LDPE/LLDPE (70/30, w/w) containing 0–20 wt% TPOS in the presence of 3 wt% of PE-grafted maleic anhydride (PE-g-MA) as a compatibilizer are prepared by a twin screw extruder and then converted to appropriate thin films using an extrusion film blowing machine. Scanning electron microscopic images show that there is a relative good dispersion of oxidized starch particles in PE matrices. However, as TPOS content in the blends increases, the starch particle size increases too. The rheological analyses indicate that TPOS can decrease the elasticity and viscosity of the blends. The LDPE/LLDPE/TPOS blends show power-law behavior and as the TPOS content increases the power-law exponent (n) and consistency index (K) decrease. The ultimate tensile strength and elongation at break of the final blend films reduce, when TPOS content increases from 5 to 20 wt%. However, the required mechanical properties for packaging applications are achieved when 10 wt% oxidized starch is added, according to ASTM D4635.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号