首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct and indirect effects of ants on a forest-floor food web   总被引:1,自引:0,他引:1  
Moya-Laraño J  Wise DH 《Ecology》2007,88(6):1454-1465
Interactions among predators that prey on each other and are potential competitors for shared prey (intraguild [IG] predators) are widespread in terrestrial ecosystems and have the potential to strongly influence the dynamics of terrestrial food webs. Ants and spiders are abundant and ubiquitous terrestrial IG predators, yet the strength and consequences of interactions between them are largely unknown. In the leaf-litter food web of a deciduous forest in Kentucky (USA), we tested the direct and indirect effects of ants on spiders and a category of shared prey (Collembola) by experimentally subsidizing ants in open plots in two field experiments. In the first experiment, ant activity was increased, and the density of ants in the litter was doubled, by placing carbohydrate and protein baits in the center of each plot. Gnaphosa spiders were almost twice as abundant and Schizocosa spiders were half as abundant in baited plots relative to controls. There were more tomocerid Collembola in baited plots, suggesting possible indirect effects on Collembola caused by ant-spider interactions. The second experiment, in which screening of two mesh sizes selectively excluded large and small worker ants from a sugar bait, revealed that the large ants, primarily Camponotus, could alone induce similar effects on spiders. Gnaphosa biomass density was almost twice as high in the plots where large ants were more active, whereas Schizocosa biomass density was reduced by half in these plots. Although tomocerid densities did not differ between treatments, tomocerid numbers were negatively correlated with the activity of Formica, another large ant species. Path analysis failed to support the hypothesis that the ant Camponotus indirectly affected tomocerid Collembola through effects on densities of spiders. However, path analysis also revealed other indirect effects of Camponotus affecting tomocerids. These results illustrate the complexity of interactions between and within two major IG predator groups with disparate predatory behaviors, complexities that will have consequences for functioning of the forest-floor food web.  相似文献   

2.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   

3.
Boreal forests play an important role in the global balance of energy and CO2. Our previous study of elaborate eddy covariance observations in a Siberian boreal larch forest, conducted both above the forest canopy and at the forest floor, revealed a significant contribution of latent heat flux (LE) from the cowberry understory to the whole ecosystem LE. Thus, in the present study, we examined what factors control the partitioning of whole ecosystem LE and CO2 flux into the understory and overstory vegetation, using detailed leaf-level physiology (for both understory and overstory vegetation) and soil respiration property measurements as well as a multilayer soil-vegetation-atmosphere transfer (SVAT) model. The modeling results showed that the larch overstory's leaf area index (LAI) and vertical profile of leaf photosynthetic capacity were major factors determining the flux partitioning in this boreal forest ecosystem. This is unlike other forest ecosystems that tend to have dense LAI. We concluded that control of the larch overstory's LAI had a relationship with both the coexistence of the larch with the cowberry understory and with the water resources available to the total forest ecosystem.  相似文献   

4.
Gough L  Moore JC  Shaver GR  Simpson RT  Johnson DR 《Ecology》2012,93(7):1683-1694
Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The contrasting results of these two arctic tundra plant communities suggest that the predictions of EEH may hold for very low ANPP communities, but that other factors, including competition and shifts in vegetation composition toward less palatable species, may confound predicted responses to changes in productivity in higher ANPP communities such as the MAT studied here.  相似文献   

5.
There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches containing high densities of large trees. Finally, this study emphasizes that deliberate extraction of a particular tree species from a forest can exert influences both above and below ground if the removed species has a different functional role than that of the other plant species present.  相似文献   

6.
During the past few decades, urban and suburban developments have grown at unprecedented rates and extents with unknown consequences for ecosystem function. Carbon pools of soil and vegetation on landscaped properties were examined in the Front Range of Colorado, USA, in order to characterize vegetation and soils found in urban green spaces; analyze their aboveground biomass, vegetative C storage, and soil C storage; and compare these suburban ecosystem properties to their counterparts in native grassland and cultivated fields. Anthropogenic activities leave clear signatures on all three C compartments measured. Management level dominates the response of grass production, biomass, and N tissue concentration. This, in turn, influences the amount of C and N both stored in and harvested from sites. The site age dominates the amount of woody biomass as well as soil C and N. Soil texture only secondarily affects total soil carbon and total bulk density. Established urban green spaces harbor larger C pools, more than double in some cases, than native grasslands or agricultural fields on a per-area basis. Lawn grass produces more biomass and stores more C than local prairie or agricultural fields. Introduced woody vegetation comprises a substantial C pool in urban green spaces and represents a new ecosystem feature. After an initial decrease with site development, soil organic carbon (SOC) pools surpass those in grasslands within two decades. In addition to the marked increase of C pools through time, a shift in storage from belowground to aboveground occurs. Whereas grasslands store approximately 90% of C belowground, urban green spaces store a decreasing proportion of the total C belowground in soils through time, reaching approximately 70% 30-40 years after construction. Despite the substantial increase in C pools in this urban area, it is important to recognize that this shift is distinct from C sequestration since it does not account for a total C budget, including increased anthropogenic C emissions from these sites.  相似文献   

7.
Baer SG  Blair JM 《Ecology》2008,89(7):1859-1871
The traditional logic of carbon (C) and nitrogen (N) interactions in ecosystems predicts further increases or decreases in productivity (positive feedback) in response to high and low fertility in the soil, respectively; but the potential for development of feedback in ecosystems recovering from disturbance is less well understood. Furthermore, this logic has been challenged in grassland ecosystems where frequent fires or grazing may reduce the contribution of aboveground litter inputs to soil organic matter pools and nutrient supply for plant growth, relative to forest ecosystems. Further, if increases in plant productivity increase soil C content more than soil N content, negative feedback may result from increased microbial demand for N making less available for plant growth. We used a field experiment to test for feedback in an establishing grassland by comparing aboveground net primary productivity (ANPP) and belowground pools and fluxes of C and N in soil with enriched, ambient, and reduced N availability. For eight years annual N enrichment increased ANPP, root N, and root tissue quality, but root C:N ratios remained well above the threshold for net mineralization of N. There was no evidence that N enrichment increased root biomass, soil C or N accrual rates, or storage of C in total, microbial, or mineralizable pools within this time frame. However, the net nitrogen mineralization potential (NMP) rate was greater following eight years of N enrichment, and we attributed this to N saturation of the microbial biomass. Grassland developing under experimentally imposed N limitation through C addition to the soil exhibited ANPP, root biomass and quality, and net NMP rate similar to the ambient soil. Similarity in productivity and roots in the reduced and ambient N treatments was attributed to the potentially high nitrogen-use efficiency (NUE) of the dominant C4 grasses, and increasing cover of legumes over time in the C-amended soil. Thus, in a developing ecosystem, positive feedback between soil N supply and plant productivity may promote enhanced long-term N availability and override progressive N limitation as C accrues in plant and soil pools. However, experimentally imposed reduction in N availability did not feed back to reduce ANPP, possibly due to shifts in NUE and functional group composition.  相似文献   

8.
Hines J  Megonigal JP  Denno RF 《Ecology》2006,87(6):1542-1555
Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences aboveground food web structure by affecting plant size and aboveground plant nitrogen.  相似文献   

9.
Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60-100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.  相似文献   

10.
以上海市沿海防护林为研究对象,选择6种不同树种的防护林带,采集0~10、10~20、20~40、40~60cm四层土样为研究材料,运用典型相关分析法,对防护林地土壤养分因子、微生物因子和酶活性因子中每两组变量间的相关性进行了分析。结果表明:三组变量土壤养分、微生物、酶活性中,每两者之间均有显著的典型相关变量存在,而且基本能够代表变量总体相关信息;土壤养分和土壤微生物间的相关主要由全氮、速效磷含量与微生物生物量氮、微生物生物量碳和微生物生物量磷引起;土壤养分与土壤酶活性间的相关性主要由全氮、有效磷、水解氮含量与脲酶、蛋白酶活性的相关性引起;土壤微生物与土壤酶活性间的相关性主要是由微生物生物量氮、微生物生物量磷与脲酶、蛋白酶、碱性磷酸酶活性的相关性引起;不同林地不同土壤层次的养分、微生物及酶活性在各对典型变量上的聚集趋势可为防护林建设过程中的树种选择与土壤健康诊提供一定的依据。  相似文献   

11.
Abstract: Biological invaders can reconfigure ecological networks in communities, which changes community structure, composition, and ecosystem function. We investigated whether impacts caused by the introduced yellow crazy ant (Anoplolepis gracilipes), a pantropical invader rapidly expanding its range, extend to higher‐order consumers by comparing counts, behaviors, and nesting success of endemic forest birds in ant‐invaded and uninvaded rainforest on Christmas Island (Indian Ocean). Point counts and direct behavioral observations showed that ant invasion altered abundances and behaviors of the bird species we examined: the Island Thrush (Turdus poliocephalus erythropleurus), Emerald Dove (Chalcophaps indica natalis), and Christmas Island White‐eye (Zosterops natalis). The thrush, which frequents the forest floor, altered its foraging and reproductive behaviors in ant‐invaded forest, where nest‐site location changed, and nest success and juvenile counts were lower. Counts of the dove, which forages exclusively on the forest floor, were 9–14 times lower in ant‐invaded forest. In contrast, counts and foraging success of the white‐eye, a generalist feeder in the understory and canopy, were higher in ant‐invaded forest, where mutualism between the ant and honeydew‐secreting scale insects increased the abundance of scale‐insect prey. These complex outcomes involved the interplay of direct interference by ants and altered resource availability and habitat structure caused indirectly by ant invasion. Ecological meltdown, rapidly unleashed by ant invasion, extended to these endemic forest birds and may affect key ecosystem processes, including seed dispersal.  相似文献   

12.
Albers D  Schaefer M  Scheu S 《Ecology》2006,87(1):235-245
We used stable isotopes to examine the incorporation of plant carbon into the belowground food web of an agricultural system. Plots were established and planted with maize (Zea mays) in a rye field (Secale cereale) near G?ttingen (northern Germany) in May 1999. In October 1999, April 2000, and October 2000, meso- and macrofauna and maize and rye litter were collected in each plot and analyzed for 13C and 15N content. 15N signatures suggested that the soil animal species analyzed span three trophic levels with the trophic position of species varying little in time. The species investigated formed a continuum from primary to secondary decomposers to predators. On average, predator species differed from primary and secondary decomposers by 3.9 sigma15N suggesting that they fed on a mixed diet of both decomposer groups. The combined analysis of 13C and 15N signatures allowed us to identify links between prey and consumer species. In October 1999, shortly after maize residues had been incorporated into the plots, maize-born carbon was present in each of the animal species investigated, including top predators. The incorporation of maize carbon into the belowground food web increased during the following 12 months but the concentration of maize-born carbon never exceeded 50% in any of the species. Furthermore, the ranks of the incorporation of maize-born carbon of the species changed little. The results suggest that the belowground food web relies heavily on carbon originating from plant residues from before the recent two growing seasons. In most species the amount of maize-born carbon increased continuously; however, in some species it decreased during winter, suggesting that these species switched to a diet based more on C3 plants during winter, or predominantly metabolized carbon incorporated during the last growing season. The study documents that the combined analysis of 13C and 15N signatures in soil invertebrate species, after replacement of C3 by C4 plants, is a powerful tool to better understand the structure of the belowground food web and the flux of carbon through it.  相似文献   

13.
土壤是陆地生态系统碳储存的重要场所,其养分变化与全球陆地碳循环密切相关。土壤养分是植物生长的重要保证,而土壤各养分之间是紧密联系的。理解土壤养分变化与环境因素的关系有助于更好地了解陆地生态系统碳、氮、磷循环。本研究以东北北部自东向西沿降水量梯度变化纬度带上的温带森林与干草地生态系统为研究对象,利用气象数据和野外土壤实测数据,分析了纬度带上不同植被类型土壤的有机碳、全氮、碳氮比、速效磷的空间分布格局及其与环境因子(年降水量、年均温、土壤pH值)的关系。研究纬度带上降水量自东向西逐渐减少,植被类型从温带森林过渡到干草原,与降水量和植被类型对应,植被生物量也自东向西呈现从高到低的分布梯度。研究结果表明:从整个研究带上来说,降水量与土壤pH值是土壤养分空间分布的决定因素,沿纬度带从东到西,随着降水量逐渐减少,土壤pH值逐渐增加,而土壤有机碳、全氮、碳氮比、速效磷含量逐渐减少。但如果将森林和草地分别讨论则发现,森林和草地生态系统的土壤养分环境控制因素有较大差别。对于草地生态系统而言,降水量和土壤pH值仍然是其土壤养分含量的控制因子,但森林生态系统由于所处区域降水量充足,降水量不再是其土壤养分的控制因子,降水量只与森林土壤碳氮比呈显著正相关。研究还发现森林土壤的速效磷含量与温度呈正相关,与土壤pH值呈负相关,说明温度对东北北部温带森林的土壤养分含量具有一定的控制作用。  相似文献   

14.
In the northeastern United States, the input of reactive nitrogen (N) via atmospheric deposition has increased rapidly since the onset of the industrial revolution. During the same period of time, acid precipitation and forest harvest have removed substantial quantities of base cations from soil. Because of the dominance of base-poor soils and the low rates of atmospheric base cation deposition, soils throughout the northeastern United States may be increasingly rich in N but poor in calcium (Ca). We studied the consequences of a change in soil N and Ca availability on forest composition by transplanting seedlings of four tree species into replicate plots in the understory and in canopy gaps amended with N and Ca in factorial combination. In this paper, we report on the growth and survivorship of seedlings over a four-year period. Relative to control plots, fertilization with N increased red maple growth by an average of 39% whereas fertilization with Ca decreased survivorship in the understory by 41%. In sugar maple, fertilization with Ca increased growth by 232% and 46% in the forest understory and in canopy gaps, respectively, and significantly increased high light survivorship. Fertilization with N decreased white pine survivorship by 69% in the understory whereas high Ca availability significantly increased survivorship. Fertilization with N or Ca alone reduced red oak growth but had no effect on survivorship. The results of this study suggest that historical losses of soil Ca and the continuing effects of atmospheric-N deposition on N availability are likely to alter the composition of northeastern North American forests because of the positive effects of N enrichment on the growth of red maple and the negative effects of Ca loss on the growth and survivorship of sugar maple and white pine.  相似文献   

15.
We investigated N cycling and denitrification rates following five years of N and dolomite amendments to whole-tree harvested forest plots at the long-term soil productivity experiment in the Fernow Experimental Forest in West Virginia, USA. We hypothesized that changes in soil chemistry and nutrient cycling induced by N fertilization would increase denitrification rates and the N2O:N2 ratio. Soils from the fertilized plots had a lower pH (2.96) than control plots (3.22) and plots that received fertilizer and dolomite (3.41). There were no significant differences in soil %C or %N between treatments. Chloroform-labile microbial biomass carbon was lower in fertilized plots compared to control plots, though this trend was not significant. Extractable soil NO3- was elevated in fertilized plots on each sample date. Soil-extractable NH4+, NO3-, pH, microbial biomass carbon, and %C varied significantly by sample date suggesting important seasonal patterns in soil chemistry and N cycling. In particular, the steep decline in extractable NH4+ during the growing season is consistent with the high N demands of a regenerating forest. Net N mineralization and nitrification also varied by date but were not affected by the fertilization and dolomite treatments. In a laboratory experiment, denitrification was stimulated by NO3- additions in soils collected from all field plots, but this effect was stronger in soils from the unfertilized control plots, suggesting that chronic N fertilization has partially alleviated a NO3- limitation on denitrification rates. Dextrose stimulated denitrification only in the whole-tree-harvest soils. Denitrification enzyme activity varied by sample date and was elevated in fertilized plots for soil collected in July 2000 and June 2001. There were no detectable treatment effects on N2O or N2 flux from soils under anaerobic conditions, though there was strong temporal variation. These results suggest that whole-tree harvesting has altered the N status of these soils so they are less prone to N saturation than more mature forests. It is likely that N losses associated with the initial harvest and high N demand by aggrading vegetation is minimizing, at least temporarily, the amount of inorganic N available for nitrification and denitrification, even in the fertilized plots in this experiment.  相似文献   

16.
为了解长江上游低山丘陵区马尾松(Pinus massoniana)人工林生态系统的C、N、P分配格局及化学计量特征,本文采用时空互代的方法,在宜宾高县来复林区选取三种不同林龄(5年生幼龄林、14年生中龄林、39年生成熟林),但立地条件相近、样地情况基本一致的马尾松(Pinus massoniana)人工林作为研究对象,对马尾松针叶、凋落物及土壤中的C、N、P含量及 w(C)?w(N)?w(P)化学计量特征进行测定和分析。结果表明,(1)C、N、P 含量均表现为针叶〉凋落物〉土壤,且在三个库之间差异显著;(2)林龄对针叶、凋落物、土壤的 C、N、P 及 w(C)?w(N)、w(C)?w(P)计量比均有显著影响。(3)土壤 C、N、P含量在成熟林中最高;针叶和凋落物的C含量在成熟林中最低,N、P含量则在中龄林中最高。(4)随林龄增加马尾松对N、P的利用效率降低,针叶、凋落物及土壤的w(C)?w(N)与 w(C)?w(P)均表现为下降。(5)马尾松针叶w(N)?w(P)比值在14.37~15.53之间,说明该地区马尾松人工林受N和P的共同限制,但林龄对N、P养分限制的影响不显著。为提高该区马尾松人工林的生产力,建议在人工林的抚育管理中要适当增加N肥和P肥,同时也可在马尾松人工林引入豆科固氮植物以提高地力。该研究将马尾松针叶、凋落物及土壤结合起来探究随林龄增长C、N、P养分元素的分配格局及化学计量特征的变化,有助于全面、系统地揭示马尾松人工林生态系统的养分循环,对指导马尾松人工林生产,调节和改善林木生长环境,提高系统的养分利用效率及林地生产力具有重要意义。  相似文献   

17.
Niu S  Sherry RA  Zhou X  Wan S  Luo Y 《Ecology》2010,91(11):3261-3273
Modeling studies have shown that nitrogen (N) strongly regulates ecosystem responses and feedback to climate warming. However, it remains unclear what mechanisms underlie N regulation of ecosystem-climate interactions. To examine N regulation of ecosystem feedback to climate change, we have conducted a warming and clipping experiment since November 1999 in a tallgrass prairie of the Great Plains, USA. Infrared heaters were used to elevate soil temperature by an average of 1.96 degrees C at a depth of 2.5 cm from 2000 to 2008. Yearly biomass clipping mimicked hay or biofuel feedstock harvest. We measured carbon (C) and N concentrations, estimated their content and C:N ratio in plant, root, litter, and soil pools. Warming significantly stimulated C storage in aboveground plant, root, and litter pools by 17%, 38%, and 29%, respectively, averaged over the nine years (all P < 0.05) but did not change soil C content or N content in any pool. Plant C:N ratio and nitrogen use efficiency increased in the warmed plots compared to the control plots, resulting primarily from increased dominance of C4 plants in the community. Clipping significantly decreased C and N storage in plant and litter pools (all P < 0.05) but did not have interactive effects with warming on either C or N pools over the nine years. Our results suggest that increased ecosystem nitrogen use efficiency via a shift in species composition toward C4 dominance rather than plant N uptake is a key mechanism underlying warming stimulation of plant biomass growth.  相似文献   

18.
Stover DB  Day LF  Butnor JR  Drake BG 《Ecology》2007,88(5):1328-1334
Growth and distribution of coarse roots in time and space represent a gap in our understanding of belowground ecology. Large roots may play a critical role in carbon sequestration belowground. Using ground-penetrating radar (GPR), we quantified coarse-root biomass from an open-top chamber experiment in a scrub-oak ecosystem at Kennedy Space Center, Florida, USA. GPR propagates electromagnetic waves directly into the soil and reflects a portion of the energy when a buried object is contacted. In our study, we utilized a 1500 MHz antenna to establish correlations between GPR signals and root biomass. A significant relationship was found between GPR signal reflectance and biomass (R2 = 0.68). This correlation was applied to multiple GPR scans taken from each open-top chamber (elevated and ambient CO2). Our results showed that plots receiving elevated CO2 had significantly (P = 0.049) greater coarse-root biomass compared to ambient plots, suggesting that coarse roots may play a large role in carbon sequestration in scrub-oak ecosystems. This nondestructive method holds much promise for rapid and repeatable quantification of coarse roots, which are currently the most elusive aspect of long-term belowground studies.  相似文献   

19.
选择攀枝花苏铁林下计划烧除试验后苏铁及其根系周围土壤(0~15 cm)为对象,研究火烧对攀枝花苏铁植株生长、叶片生理和苏铁根系周围土壤理化性质的影响,以期为区域攀枝花苏铁种群恢复和生态环境保护提供理论依据.结果表明:计划烧除区域苏铁成年树的株数及株高没有显著变化,新生叶片数目和幼苗株数相对未烧除区域显著增加,增幅分别达201.66%和317.7%;烧除区域苏铁植株新生叶片叶绿素a、叶绿素b、叶绿素a+b,可溶性糖、蛋白质含量,硝酸还原酶(NR)、谷氨酰胺合成酶(GS)活性,叶片碳(C)、氮(N)、磷(P)、钾(K)含量,C/N、N/P比与对照区域新生叶片相比无显著性差异,只有类胡萝卜素含量显著降低.计划烧除改变了苏铁根围土壤(0~15 cm)的理化性质,表现在烧除后的土壤含水量、pH值及总N、P、K含量显著降低;但是,火烧显著提高了土壤有机碳(TOC)、硝态氮(NO3--N)、铵态氮(NH4+-N)含量,微生物量C、N含量也略有升高;这说明火烧有利于增加苏铁林下土壤养分(N)的有效性,为烧除后苏铁快速恢复生长提供有利条件.  相似文献   

20.
Gibb H 《Ecology》2011,92(10):1871-1878
Habitat succession is thought to influence the importance of competition in assemblages. Competitive interactions are considered of critical importance in structuring ant assemblages, but field experiments show varied effects. I tested how succession in managed boreal forests affects the outcome of competition from dominant red wood ants, Formica aquilonia, through a removal experiment in replicated stands of three different ages (0-4, 30-40, and 80-100 years old). F. aquilonia abundance was reduced by 87%, and procedural controls showed no nontarget effects. The succession gradient revealed the full range of possible responses from ant species: decreases in 1-4-year-old stands, increases in 30-40-year-old stands, and no effects in 80-100-year-old stands, where diversity was lowest. Habitat succession thus regulates competitive interactions in this system. I propose a model for this system, where competitive effects depend on time since disturbance. In this case, soon after disturbance the dominant species facilitates increases in the abundance of other species. At intermediate times, competition reduces the abundance of some species. Finally, in long-undisturbed habitats, competitors may fail to evolve, particularly in high-stress environments. Interactions between competition and habitat succession may explain why structuring effects of ecologically dominant species appear inconsistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号