首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
综合类   3篇
基础理论   1篇
污染及防治   2篇
  2011年   2篇
  2007年   1篇
  1999年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the annual microbial N cycle. Tree belowground C allocation increases N accumulation in microorganisms during the winter which may ultimately feed back on plant N availability in the following growing season.  相似文献   
2.
3.
An OECD initiative for the development of mollusc-based toxicity tests for endocrine disrupters and other chemicals has recommended three test species with respective test designs for further standardisation. Preparing a subsequent pre-validation study we performed a reproduction test with Potamopyrgus antipodarum, determining the concentration range of the selected test substances, bisphenol A (BPA) and cadmium (Cd). At 16 °C, the recommended test temperature, the number of embryos in the brood pouch was increased by BPA and decreased by Cd (NOEC: 20 μg BPA/L and 1 μg Cd/L). Coinstantaneous BPA tests at 7 °C and 25 °C demonstrated a temperature dependency of the response, resulting in lower NOECs (5 μg/L respectively). As expected, reproduction in control groups significantly varied depending on temperature. Additional observations of the brood stock showed seasonal fluctuations in reproduction under constant laboratory conditions. The recommended temperature range and test conditions have to be further investigated.  相似文献   
4.
Denitrification in the river estuaries of the northern Baltic Sea   总被引:3,自引:0,他引:3  
Estuaries have been suggested to have an important role in reducing the nitrogen load transported to the sea. We measured denitrification rates in six estuaries of the northern Baltic Sea. Four of them were river mouths in the Bothnian Bay (northern Gulf of Bothnia), and two were estuary bays, one in the Archipelago Sea (southern Gulf of Bothnia) and the other in the Gulf of Finland. Denitrification rates in the four river mouths varied between 330 and 905 micromol N m(-2) d(-1). The estuary bays at the Archipelago Sea and the Gulf of Bothnia had denitrification rates from 90 micromol N m(-2) d(-1) to 910 micromol N m(-2) d(-1) and from 230 micromol N m(-2) d(-1) to 320 micromol N m(-2) d(-1), respectively. Denitrification removed 3.6-9.0% of the total nitrogen loading in the river mouths and in the estuary bay in the Gulf of Finland, where the residence times were short. In the estuary bay with a long residence time, in the Archipelago Sea, up to 4.5% of nitrate loading and 19% of nitrogen loading were removed before entering the sea. According to our results, the sediments of the fast-flowing rivers and the estuary areas with short residence times have a limited capacity to reduce the nitrogen load to the Baltic Sea.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号