首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 534 毫秒
1.
混酸中甲苯半间歇硝化过程的危险性研究   总被引:2,自引:2,他引:2  
为了解甲苯在混酸中硝化的危险性,用差示扫描量热法(DSC)测试甲苯、混酸及一硝基甲苯的热分解情况,用反应量热仪(RC1e)研究搅拌速度、温度及硝酸过用率3因素对目的反应的影响。结果表明,混酸分解温度最低,而当目的反应的3因素出现异常,以及反应过程中发生冷却失效时,均可导致硝化反应体系不稳定,此时若不停止加料,并采取措施,易引起混酸的分解,进一步可引起一硝基甲苯的分解,导致严重后果。  相似文献   

2.
采用反应量热仪(RC1e)、差示扫描量热仪(DSC)和绝热加速量热仪(ARC)对环己酮过氧化反应过程的热失控危险性进行了研究,利用冷却失效情形法对该工艺进行危险性分级。结果表明:温度的升高使环己酮过氧化反应速率加快,体系比热容增加,温度升高也使产物各种中间体及副反应活跃程度增加,提高搅拌速度也能促进环己酮氧化,而延长加料时间可以将反应热量较好地移出,但同时降低反应速率,使过氧化环己酮得率降低。依据风险评价指数矩阵法和失控情景分析法,得到环己酮半间歇过氧化反应的热失控危险程度级别为5级,而降低环己酮的加入量,危险程度等级为2级。  相似文献   

3.
过氧化苯甲酰合成工艺热危险性分析   总被引:1,自引:0,他引:1  
采用RC1e反应量热仪对过氧化苯甲酰(BPO)合成工艺危险性进行研究,测试不同Na OH溶液初始浓度(1.96 mol/L、3.93 mol/L、7.14 mol/L)下反应的放热历程,获得BPO合成反应过程中的热危险性参数,并采用PHI-TECⅡ绝热加速量热仪对产物进行热稳定性分析,最后评估该反应热风险。结果表明,Na OH浓度为7.14 mol/L时,反应初期放热速率慢,热累积度大,后期反应剧烈,绝热温升(ΔTad)及热失控时工艺反应达到的最高温度(MTSR)最大。热稳定性试验表明,合成的粗产物BPO初始分解温度、活化能、指前因子、最大放热速率到达时间为24 h时的对应温度(TD24)均低于纯BPO。利用合成粗产物BPO的TD24对反应进行危险度评估,该工艺热危险性等级均为5级,工艺危险性大。  相似文献   

4.
反应量热仪RC1研究磺化反应过程中热危险性具有评价路线简单、易于操作、过程绿色环保等优势,近年来逐渐成为研究的热点.磺化反应过程中由于工艺的不同,不同磺化反应过程的热危险性也具有很大的差别.通过反应量热仪RC1、差示扫描量热DSC、绝热加速量热仪ARC对10种不同工艺的磺化反应过程的热危险进行了深入的研究,对企业实践生...  相似文献   

5.
硝酸及氯离子对高温硝酸铵水溶液热危险性的影响研究   总被引:3,自引:1,他引:3  
国内外学者对硝酸铵的危险性进行了大量的研究,而对其水溶液的危险性至今开展不多。笔者采用差示扫描量热仪(DSC)及全自动反应量热仪(RC1e)对高温状态下的硝酸铵水溶液的热分解危险性、杂质离子对其稳定性的影响进行了研究。纯硝酸铵和90%硝酸铵水溶液的DSC实验表明,90%硝酸铵溶液和分析纯硝酸铵具有相似的热爆炸危险;90%硝酸铵水溶液在140~180℃之间的RC1e试验表明:硝酸或氯离子单独存在时,对硝酸铵分解都有不同程度的抑制作用,而同时存在时则大大降低体系的热稳定性。该结果对保障硝酸铵在生产、使用过程中的安全具有重要的参考价值。  相似文献   

6.
苯和甲苯硝化及磺化反应热危险性分级研究   总被引:1,自引:1,他引:0  
首先介绍了化工工艺热安全性的内涵,并从反应过程热危险性分析的方法学出发,介绍间隙、半间歇化学反应工艺热危险性分级研究的总体思路及方法。然后,围绕甲苯和苯的硝化、磺化反应,用全自动反应量热仪(RC1e)和加速度量热仪(ARC)测定其反应过程的绝热温升(△Tad)、目标反应所能达到的最高温度(TM)、分解反应最大速率到达时间(θD)等参数。运用风险评价指数矩阵法(方法1)和基于失控过程温度参数的热危险评估法(方法2)分别对其硝化和磺化反应过程的热危险性进行了分级评估。结果表明,这两种方法具有良好的一致性;给定工艺条件下甲苯和苯的一段硝化反应过程的热危险度等级较低;而磺化反应的热危险较高。尽管这两种方法还有一定的局限性,但对于间歇、半间歇合成工艺的本质安全化设计、工艺热危险性的评估具有重要的参考价值和实用意义。  相似文献   

7.
为研究2-氨基-23,-二甲基丁酰胺氧化合成的热危险性,采用差示扫描量热仪(DSC)测试2-氨基-2,3-二甲基丁腈和2-氨基-2,3-二甲基丁酰胺的热分解情况,采用反应量热仪(RC1)研究反应温度、双氧水滴加速度和氢氧化钠用量对反应的影响。研究结果显示,2-氨基-2,3-二甲基丁腈吸热热分解温度为149.5℃2,-氨基-2,3-二甲基丁酰胺表现为吸热和放热2段分解过程,吸热和放热分解温度分别为234.4℃和456℃。反应放热速率主要为加料控制,但是,存在一定的热累积。热失控体系最高温度(MTSR)低于2-氨基-23,-二甲基丁腈和2-氨基-23,-二甲基丁酰胺的分解温度,高于体系沸腾温度,在热失控的条件下,反应体系容易导致冲料危险;在优惠的工艺条件范围内,提高反应温度,延长滴加时间,可降低反应的MTSR,提高热转化率和反应安全性。  相似文献   

8.
为预防间歇式反应器热失控风险,以恒温间歇式丙酸异丙酯合成反应为原型,利用反应量热仪(RC1e)获得不同冷却温度下反应放热特性及热动力学参数,并对计算流体力学(CFD)软件Fluent模拟结果进行试验验证。基于经验证的CFD耦合模型,对反应过程中搅拌和冷却失控情景进行模拟分析,分别从搅拌转速、冷却温度以及冷却流速失控3方面,研究失控情景对反应温升的影响。结果表明:反应温升对不同失控情景存在参数敏感性,其中冷却流速对反应温升影响较大,较低的入口冷却流速直接促使局部换热死区的形成,使失控时间相对标准工况提前近1/5,温度提高近22℃;以反应失控判据Chaos准则为警报标准,确定反应器最佳温度探测器应安装在反应液系内部远离冷却入口且靠近液面1/3处及以上的位置。  相似文献   

9.
为研究不同氧气浓度对煤自燃反应能级的影响,基于热重实验分别得到6个不同氧气浓度下的煤自燃特征温度点,通过计算不同阶段内煤自燃的反应动力学参数分析氧气浓度与煤自燃反应能级关系。实验结果表明:n≠1时,氧气浓度对煤自燃反应能级(n)的影响在不同温度段内的影响不同;氧气浓度与T1,T2,T3特征温度点的关系曲线变化趋势不明显,T4~T8温度点与氧浓度的关系呈现先增大后减小的趋势。  相似文献   

10.
利用差示扫描量热仪(DSC)、反应量热仪(RC1和快速筛选仪(RSD)等仪器设备,对硫化油合成过程的热特征和压力特征进行系统研究,发现该反应为微吸热的过程,但仍应严格控制工艺参数,如压力、温度等。防止反应器中混入水等低沸点物质,导致容器超压。反应器内避免混入空气、硝酸等禁忌物料,防止因活性反应而引发灾害性燃爆事故。  相似文献   

11.
The exothermic oxidation of 3-methylpyridine with hydrogen peroxide was analyzed by Reaction Calorimeter (RC1e) in semi-batch operation. Heat releasing rate and heat conversion were studied at different operating conditions, such as reaction temperature, feeding rate, the amount of catalyst and so on. The thermal hazard assessment of the oxidation was derived from the calorimetric data, such as adiabatic temperature rise (ΔTad) and the maximum temperature of synthesis reaction (MTSR) in out of control conditions. Along with thermal decomposition of the product, the possibility of secondary decomposition under runaway conditions was analyzed by time to maximum rate (TMRad). Also, risk matrix was used to assess the risk of the reaction. Results indicated that with the increase of the reaction temperature, the reaction heat release rate increased, while reaction time and exotherm decreased. With the increase of feeding time, heat releasing rate decreased, but reaction time and exotherm increased. With the amount of the catalyst increased, heat releasing rate increased, reaction time decreased and exothermic heat increased. The risk matrix showed that when the reaction temperature was 70 °C, feeding time was 1 h, and the amount of catalyst was 10 g and 15 g, respectively, the reaction risk was high and must be reduced.  相似文献   

12.
Reaction thermal runaway is one of the most important reasons leading to chemical accidents. With the rapid development of the chemical industry in the world, especially the fine chemical industry, various safety accidents also occur frequently. Therefore, it is necessary to study the exothermic behavior of the reaction process. In this study, reaction calorimeter was used to study the exothermic phenomena during the chlorination reaction and amination reaction. Differential scanning calorimetry was performed on the reactants, and thermogravimetric experiments were performed on the products. In addition, adiabatic experiment was performed to study the thermal runaway behavior of amination products under adiabatic conditions. The results showed that the target reactions generated a large amount of heat in the initial stage. The maximum temperature of amination reaction is higher than the initial decomposition temperature of the amination product under adiabatic condition. The pyrolysis of amination product was divided into three stages. The product had a high apparent activation energy at the beginning of decomposition, and the apparent activation energy decreased as the decomposition progressed.  相似文献   

13.
利用化学动力学软件CHEMKIN4.1,在不同初始温度、浓度、湿度和压强下,对甲烷热着火进行了详细化学动力学 模拟。通过对主要组分摩尔浓度分析和温度敏感性分析,得到了甲烷热着火过程的主要基元反应和引发热着火发生的主 要原因。通过对甲烷热着火的延迟时间、热着火发生后主要生成物摩尔浓度和反应后的温度的对比分析,揭示了初始浓 度、湿度和压强对甲烷热着火的影响规律。本研究可以为甲烷为主的气体如瓦斯、天然气等可燃气体的燃烧和爆炸提供 理论支撑,从而有效利用这些可燃气体,降低灾害的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号