首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
太阳能作为一种可再生的清洁能源,已经广泛应用到一些需要供电的个体和大规模应用的发电站。到目前为止,国内外仍然把研究重点放在如何提高太阳能的转化效率和使用寿命,但对于废旧晶硅太阳能的回收利用没有足够的重视。综述了国内外废旧晶硅太阳能回收处理的发展情况,阐述了几种回收方法的工艺流程及工艺优缺点,最后提出了对晶硅太阳能电池回收利用的对策与建议。  相似文献   

2.
针对硅晶切割过程中产生的切割废砂浆的资源化回收问题,建立了每小时处理1t废砂饼的绿色再生工艺装备.通过工业试运行,实现了水资源的循环利用,回收的硅晶切割砂纯度达到97%,6~11 μm粒径切割砂的集中度大于78%,6μm以上的切割砂全部实现了回收.该工艺过程不消耗酸碱,节约了化学资源的消耗,从源头上消除了废酸、废碱的污染,是回收硅晶切割砂的一种理想工艺装备.  相似文献   

3.
<正>专利申请号:CN201811157681公开号:CN109112312A申请日:2018.09.30公开日:2019.01.01申请人:广州市吉池环保科技有限公司本发明提出了一种从微蚀废液中回收铜的方法,先使用还原剂还原微蚀废液中的强氧化剂,再用铜萃取剂萃取萃余液在调配前,使用高效除油装置,可保证后续所配微蚀液  相似文献   

4.
用盐效萃取法从电子产品清洗废液中回收片丙醇,考察了碳酸钾水溶液与该清洗废液的质量比对脱水率的影响,测定了异丙醇-水-碳酸钾体系存40℃时的液液相平衡数据,用Pitzer理论和NRTL方程对液液相平衡数据进行了理论计算。结果表明:当质量分数为60.00%的碳酸钾水溶液与该废液的质晕比为2.00时,脱水率高达90.00%;将有机相进行精馏可得到质量分数为99.50%的异丙醇;计算值与实测值接近,水相和有机相的绝对平均偏差分别为0.62%和0.46%。  相似文献   

5.
国外动态     
一种焚烧废液回收热能的处理方式Information Chimie,[271],241—243(1986)法国罗的—布朗克公司在夏朗佩的化工厂中产生两种废液:一种是有机废液,主要是蒸馏残液、焦油以及沉淀池中的有机层等,有机废液含水量小于20%;另一种是水溶性废液,主要是洗涤液、沉淀池中的水溶部份,此类废液含水量大于70%。该公司采用焚烧炉处理废液,以产生25巴压力的蒸汽回收热能。焚烧炉处理水溶性废液量为20吨/小时,废液  相似文献   

6.
简要分析了碱性蚀刻废液的特点,总结了萃取电积法再生碱性蚀刻废液的基本原理,并进行了工程应用和环境效益分析。结果表明,碱性蚀刻再生液的蚀刻速率达60 m/min,蚀刻因子为3.5以上,回收铜纯度为99.95%。  相似文献   

7.
MarsTechnologies公司开发出一种方法,可从废盐酸中有选择地回收混合金属。在离子交换柱中,金属氯化物被标准离子交换树脂吸附,然后再用一种专利方法解吸。所用的解吸液为普通水,但关键是控制水的流量,因为氯化物的络合物及其相对稳定性取决于水的化学性质。  在工业试验中,从酸洗废液中回收过锌、氯化亚铁、锡、铅、铜、铁、锑、镍和铬。建1座处理酸洗废液1000t/月的装置约需投资250万美元。从酸洗废液中回收金属  相似文献   

8.
介绍了不锈钢酸洗废液的来源、组成和危害.综述了酸洗废液中酸及金属的回收方法、原理及优缺点,着重介绍了酸的扩散渗析、双极膜电渗析、蒸酸和焙烧回收技术,以及金属盐的中和沉淀、析晶、离子交换树脂和萃取回收技术.指出将多种技术进行组合,可实现酸洗废液中金属盐和酸的双重回收.  相似文献   

9.
分析了氯离子的干扰机理,提出了用硝酸银代替硫酸汞消除氯离子干扰测定高氯离子水样COD的分析方法,同时对COD废液的处理及废液中银的回收利用进行了研究。实验结果表明,该法具有较好的准确性和重复性,其相对误差均在国家规定的允许范围内;COD废液中的银经分离后,用Zn—H2SO4体系还原回收,银回收率为94.8%,回收的银粉纯度为99.6%,且可实现COD废液中银的循环使用。  相似文献   

10.
蚀刻液水合肼还原除铜   总被引:2,自引:0,他引:2  
将电路板厂废弃的蚀刻液,经氢氧化铜沉淀法回收大部分铜后,再采用水合肼还原,进一步除铜。反应温度为50℃,水合肼质量分数为3.0%,溶液pH为6.0,废液中铜的去除率可达98.5%,处理后废液中铜的质量浓度低于0.2g/L,可作为碱性蚀刻液重复利用。  相似文献   

11.
采用化学反应除杂和水力沉降粒度重新分级的方法,通过酸洗、碱洗、水力分级、pH值调节、干燥、配料等一系列处理工艺,对废砂浆中的碳化硅进行再生处理,得到的再生切割刃料各项性能指标满足切割工业使用要求,实现了资源再利用和循环发展.  相似文献   

12.
Journal of Material Cycles and Waste Management - The objective of this study is to recover SiC from silicon wafer cutting slurry using physical separation and acid/alkali purification processes....  相似文献   

13.

A major challenge in recycling of silicon powder from kerf loss slurry waste is the complete removal of metal particles. The traditional acid leaching method is costly and not green. In this paper, a novel approach to recover high-purity Si from the kerf loss slurry waste of solar grade silicon was investigated. The metal impurities were removed with superconducting high gradient magnetic separation technology. The effects of process parameters such as magnetic flux density, slurry density, and slurry flow velocity on the removal efficiency were investigated, and the parameters were optimized. In one lot of control experiments, the silicon content was increased from 90.91 to 95.83%, iron content reduced from 3.24 to 0.57%, and aluminum content from 2.44 to 1.51% under the optimum conditions of magnetic flux density of 4.0 T, slurry density of 20 g/L, and slurry flow velocity of 500 mL/min. The result indicates that the superconducting high gradient magnetic separation technology is a feasible purifying method, and the magnetic separation concentrate could be used as an intermediate product for high-purity Si powder.

  相似文献   

14.
Inkjet printing of metal nanoparticles is an attractive method for front-side metallization of silicon solar cells. It is owing to noncontact, low-cost, low-waste, and simple process. In this work, we proposed the ink-jet printing and electroless technology to fabricate the seed layer and electrode layer, respectively. Furthermore, we used electroplating method to increase the electrode conductivity. In this way, the energy conversion efficiency up to 12.22% without AR coating can be obtained on 100?×?100 mm c-Si cell.  相似文献   

15.
严良  杨敬一  徐心茹 《化工环保》2015,35(6):656-661
采用破乳-絮凝法结合有机硅表面活性剂处理塔里木油田含油污水,以水样的油含量、Zeta电位、显微照片、界面张力为考察参数,得到一种新型水处理剂NP-22。NP-22为有机硅改性破乳-絮凝剂,其配方为破乳-絮凝剂YL-7和有机硅表面活性剂321的质量比95∶15。在NP-22加入量90 mg/L、反应温度45℃、沉降时间90min的优化条件下处理含油污水,水样的油含量由728.8 mg/L降至34.3 mg/L,除油率达95.3%。有机硅表面活性剂321可有效降低油水界面张力,与YL-7复合使用,可取得更好的除油效果。  相似文献   

16.
采用氨-肼联合还原法回收废硅电池片上的银,优化了回收的工艺条件。实验得到的最佳回收工艺条件为:室温下采用硝酸2次浸取废硅电池片上的银,其中硝酸质量分数30%,硝酸浸取时间6 min;氯化银粉体用氨水和水合肼还原,n(Ag)∶n(N2H4)=0.5,水合肼还原反应温度50 ℃。回收的银粉纯度很高,结晶性较好,无需提纯。  相似文献   

17.
The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute significantly to understanding the recycling methods of NMFs from WEEE and serve as guidance for the future technology research and development.  相似文献   

18.
The manufacturing industry produces a lot of different by-products and waste. In this research, the utilization of different industrial wastes as a part of wood-plastic composites was tested. Limestone waste and carton cutting waste were tested by replacing part of the reinforcing fibers of the composite with these materials. The materials were made with the extrusion process, and they were tested for their mechanical properties, water absorption and thickness swelling. The materials were also viewed with a scanning electron microscope. The results showed that both industrial wastes affected the properties of the composite. Mining waste in the composite improved the moisture properties, impact strength and hardness of the material. Carton cutting waste improved the impact strength remarkably.  相似文献   

19.
Waste marble dusts are obtained by different methods of cutting marble in marble manufacturing companies. However, environmental damage can occur from the uncontrolled spill of these waste materials in natural habitats. In this study, we investigated the utilization of waste marble in the soil improvement of clayey soils, and as a fine aggregate in concrete production. Specifically, we determined the physical, mechanical and physicochemical characteristics of clayey soils with marble dust (MD) additive. The test results showed that some improvement occurred in the behavior of clay soil. Also, the cutting waste of marble sludge can be used as a filler material instead of fine aggregate in concrete production. This will reduce the porosity of the concrete due to the filling of the pores by MD.  相似文献   

20.
Vitrification as a waste stabilization technology has often been considered applicable only to high-level radioactive waste for which, with the use of suitable additives, it yields a vitreous material with excellent chemical durability. It has become apparent in recent years that some waste forms-notably domestic waste incineration fly-ash purification residues--contain most of the ingredients of a vitrified material, although their composition variations are difficult to control. It is thus important to ensure not only that the materials are suitable for vitrification, but also that the resulting product exhibits acceptable long-term behavior under all circumstances. An initial study showed that, allowing for the compensation changes inherent in the melting process builtby EDF**, the residue collected by a single fly-ash dust separation defines a composition range within which the suitability of the vitrified material can be verified. "Vitrified material" refers to a melted material that contains no unmelted inclusions after cooling, but that may contain a variable fraction of crystallized phases. Five composition parameters were identified for the long-term behavior assessment: the concentrations of the three major elements (silicon, aluminum and calcium), the total alkali metal (sodium and potassium) concentration, and the sum of the concentrations of two toxic elements (zinc and lead). The other elements were assumed constant at molar ratios representative of industrial wastes. The experimentation plan methodology applied to the composition range identified fourteen materials suilable for developing and validating first-order models of the material components. The fly-ash composition had a very significant effect on the degree and kinetics and crystallization in the vitrified material within the experimental composition range; the cooling rate was the determining factor for some of the fourteen materials studied. Two crystailine phases predominated: spinels rich in chromium, zinc, aluminum, magnesium and iron formed quickly on cooling, and accounted for about 2 vol% of the final material. Gehelenite (Ca2Al2SiO7) crystallized massively in some vitrified materials, accounting for more than half the final product and giving it a rock-like appearance. The effect of composition alone must therefore be distinguished from the effect of crystallization on the leaching behavior. Soxhlet tests were conducted for 14 days according to a protocol based on that of the French AFNOR draft standard NF-M 60313 to determine the maximum alteration rate in pure water at 100 degrees C. The measured rate ranged from 4 to 40 gm(-2) day(-1), illustrating the crucial role of the silicon concentration: within the test composition range, a low silicon content (< 30 wt%) tended to result in a significantly higher initial rate. However, the initial rate alone is not sufficient to assess the chemical durability of the material. Further tests will be carried out at 25 degrees C under conditions approximating those of a proposed disposal site to highlight the role of the alteration layer and the effect of rising concentrations in solution on the decreasing alteration rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号