首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 610 毫秒
1.
In limestone quarries, considerable amounts of limestone powders are being produced as by-products of stone crushers. High amounts of powders are being collected and utilisation of this by-product is a big problem from the aspects of disposal, environmental pollution and health hazards. In conventional concrete, the introduction of high volumes of limestone quarry dust to concrete mixes is limited due to its negative effects on water demand and strength of concrete. However, these fines can be efficiently utilised as viscosity enhancer particularly in special concrete (like self-compacting concrete—SCC) applications. Thus, the successful utilisation of this quarry dust in SCC could turn this material into a valuable resource.In this paper the usability of a quarry dust limestone powder in self-compacting paste and concrete applications was investigated. In the first part, the physical and mechanical properties of cement pastes incorporating quarry waste limestone powder (QLP) and a powder produced by direct grinding of limestone (PLP) were compared. In the second part, the performance of quarry waste limestone powder in SCC applications were tested and discussed. Results showed that, it is possible to successfully utilise high amounts of quarry waste limestone powder in producing normal-strength SCCs. Among its observed mechanical advantages, employment of quarry waste limestone powders improved the economical feasibility of SCC production.  相似文献   

2.
Disposal of more than 300 tonnes waste glass daily derived from post-consumer beverage bottles is one of the major environmental challenges for Hong Kong, and this challenge continues to escalate as limited recycling channels can be identified and the capacity of valuable landfill space is going to be saturated at an alarming rate. For this reason, in the past ten years, a major research effort has been carried out at The Hong Kong Polytechnic University to find practical ways to recycle waste glass for the production of different concrete products such as concrete blocks, self-compacting concrete and architectural mortar. Some of these specialty glass-concrete products have been successfully commercialized and are gaining wider acceptance. This paper gives an overview of the current management and recycling situation of waste glass and the experience of using recycled waste glass in concrete products in Hong Kong.  相似文献   

3.
The timber manufacturing and power generation industry is gradually shifting towards the use of biomass such as timber processing waste for fuel and energy production and to help supplement the electrical energy demand of national electric gridlines. Though timber processing waste is a sustainable and renewable source of fuel for energy production, the thermal process of converting the aforementioned biomass into heat energy produces significant amounts of fine wood waste ash as a by-product material which, if not managed properly, may result in serious environmental and health problems. Several current researches had been carried out to incorporate wood waste ash as a cement replacement material in the production of greener concrete material and also as a sustainable means of disposal for wood waste ash. Results of the researches have indicated that wood waste ash can be effectively used as a cement replacement material for the production of structural grade concrete of acceptable strength and durability performances. This paper presents an overview of the work carried out by the use of wood waste ash as a partial replacement of cement in mortar and concrete mixes. Several aspects such as the physical and chemical properties of wood waste ash, properties of wood waste ash/OPC blended cement pastes, rheological, mechanical and the durability properties of wood waste ash/OPC concrete mix are detailed in this paper.  相似文献   

4.
The UK government has recognised the vital contribution that the construction industry has to play in contributing towards sustainable development. While the issue of hardened concrete waste has received considerable attention, process waste arising from the manufacture of ready-mixed concrete is relatively unexplored. It is apparent that initiatives such as the landfill tax have encouraged UK ready-mixed concrete manufacturers to reduce substantially the amount of waste they produce. Environmental pressures continue to increase and ready-mixed concrete producers are being forced towards a closed loop production system.  相似文献   

5.
A national material flow model for concrete, the most popular construction material in Ireland, was developed based on the framework of material flow analysis. Using this model the Irish concrete cycle for the year 2007 was constructed by analysing the material life cycle of concrete which consists of the three phases of: production (including extraction of raw materials and manufacture of cement), usage (ready-mix and other products) and waste management (disposal or recovery). In this year, approximately 35 million metric tonnes of raw materials were consumed to produce 5 million metric tonnes of cement and 33 million metric tonnes of concrete. Concrete production was approximately 8 metric tonnes per capita. By comparison, the concrete waste produced in that year was minimal at only 0.3 million metric tonnes. Irish building stock is young and there was little demolition of structures in the year of study. However this build up of construction stock will have implications for the future waste flows when the majority of stock built in the last decade (43% of residential stock was constructed in the last 15 years) reaches its end of life.  相似文献   

6.
An outline is given of the approach to utilisation of waste materials in the construction industry, the problems involved and the prospects and trends envisaged.  相似文献   

7.
The results of the treatment of fly ash from a municipal solid waste incinerator (MSWI) by melting are described, and the safety and the effectiveness of using the slag produced by this melting treatment are studied. The properties of the MSWI fly ash slag were analyzed, to evaluate the feasibility of its reuse as a substitute for part of the cement required in mortar preparation. This MSWI fly ash slag was found to be comprised mainly of SiO2 and CaO, which can be substituted for up to 20% of the cement content in mortar, without sacrificing the quality of the resultant concrete. In fact, the concrete thus produced has greater compressive strength, 10% higher than that without the substitution. The setting time of the fresh mortar becomes lengthens as increasing amounts of cement are replaced; while the spread flow value increases with the increasing percentage of cement substitution. X-ray diffraction analysis reveals that when the W/C=0.38 and the curing AGE=28 days, the crystal patterns in the mortar samples, prepared with different amounts of cement having been replaced by MSWI fly ash slag are similar. According to the results of the toxic characteristic leaching procedure analysis, MSWI fly ash slag should be classified as general non-hazardous industrial waste, that meets the effluent standard. Therefore, the reuse of MSWI fly ash slag is feasible, and will not result in pollution due to the leaching of heavy metals.  相似文献   

8.
The use of recycled waste glasses in Portland cement and concrete has attracted a lot of interest worldwide due to the increased disposal costs and environmental concerns. Being amorphous and containing relatively large quantities of silicon and calcium, glass is, in theory, pozzolanic or even cementitious in nature when it is finely ground. Thus, it can be used as a cement replacement in Portland cement concrete. The use of crushed glasses as aggregates for Portland cement concrete does have some negative effect on properties of the concrete; however, practicle applicability can still be produced even using 100% crushed glass as aggregates. The main concerns for the use of crushed glasses as aggregates for Portland cement concrete is the expansion and cracking caused by the glass aggregates. This paper summarizes the progresses and points out the directions for the proper uses of waste glasses in Portland cement and concrete.  相似文献   

9.
Air pollution in the areas affected by the Great Hanshin Earthquake (Hyogo, Japan) of 17 Jan. 1995 was quite serious. We performed three investigations of dust. In the first investigation, we measured the total suspended particulate (TSP) concentration in the greatly damaged areas, located around the Sannomiya Station where a few hundred thousand people walked by during the daytime of 3 February. The maximum concentration at five points reached 150 microg/m3. In the second investigation, eight samples, which were classified into three groups (concrete, mortar, and soil dusts) as sources, were analyzed elementally by X-ray fluorescence. The elements found in concrete dust (Ca and S) were similar to those found in mortar dust. These differed from those found in soil dust (Ti, Fe, and Zr). The elements found in soil dust were important from the viewpoint of heavy metal contamination. In the third investigation, the alkalinity of concrete dust was observed by dissolution. This solution was equivalent to pH 11 to 12 and electrical conductivity 20 to 30 microS/m. We suspect that the alkaline component in the dust from debris in all the devastated areas was approximately comparable with the alkaline solution by which the acid rain falling over the Hanshin district of Osaka Megalopolis in one year could be neutralized into water of pH 7.0.  相似文献   

10.
Recycling of construction material helps save the limited landfill space. Among various types of materials, concrete waste accounts of about 50% of the total waste generation. Current off-site practices for ready mixed concrete batching plant generate a significant quantity of fresh concrete waste through over-order from construction sites. The use of concrete reclaimer is one of the methods to reclaim these concrete wastes, which separates coarse aggregate, sand and cement from fresh concrete. Although there are some concrete producers in Hong Kong providing concrete reclaimers in their plants, they are only used to flush and dilute the cement slurry from the concrete, which will still be ultimately send all to dumping areas. The reluctance of most concrete producers in reclaiming aggregate from the concrete waste is due to its high cost of treatment and lack of space around the plant. Therefore, this paper puts forth a scheme of economical considerations in recycling over-ordered concrete by concrete reclaimer. A comparative study on costs and benefits between the current practices and the proposed recycling plan is examined. The study shows that the costs of the current practices in dumping over-ordered fresh concrete waste to landfill areas are double that of the proposed aggregate recycling plan. Therefore, the adoption of concrete reclaimer in recycling the over-ordered fresh concrete can provide a cost-effective method for the construction industry and help saving the environment.  相似文献   

11.
In Tanzania, construction and demolition (C&D) waste is not recycled and knowledge on how it can be recycled especially into valuable products like building materials are still limited. This study aimed at investigating the possibility of recycling the C&D waste (mainly cementitious rubble) into building material in Tanzania. The building materials produced from C&D waste was concrete blocks. The concrete blocks were required to have a load bearing capacity that meets the building material standards and specifications. Eight C&D waste samples were collected from C&D building sites, transported to the recycling site, crushed, and screened (sieved) to get the required recycled aggregates. Natural aggregates were also used as control. The recycled aggregates were tested in the laboratory following the standard methods as specified in Tanzanian standards. The physical, mechanical and chemical characteristics were determined. The physical and mechanical results showed that recycled aggregates were weaker than natural aggregates. However, chemically they were close to natural aggregates and therefore suitable for use in new concrete block production. In the production process, each experiment utilized 100% recycled aggregates for both fine and coarse portions to replace natural aggregates. The Fuller's maximum density theory was used to determine the mix proportions of materials in which a method that specifies concrete mix by system of proportion or ratio was used. The concrete blocks production processes included batching, mixing (that was done manually to get homogeneous material), compacting and moulding by hand machine and curing in water. After 28 days of curing, the concrete blocks were tested in the laboratory on compressive strength, water absorption ratio and density. The results showed that the blocks produced with 100% recycled aggregates were weaker than those with natural aggregates. However, the results also showed that there is a possibility of recycling the C&D waste into building material because 85% of the tested concrete block specimens from recycled aggregates achieved a compressive strength of 7 N/mm2, which is defined as the minimum required load bearing capacity in Tanzania. Therefore, the C&D waste could be a potential resource for building material production for sustainable construction in Tanzania rather than discarding it. Further work should focus on the economic feasibility of production of concrete blocks with recycled aggregates in Tanzania.  相似文献   

12.
The process of producing cement products from solid waste can increase the level of pollutants in the cement products. Therefore, it is very important to establish a pollution control standard for cement products to protect the environment and human health. This paper presents acceptance limits for the availability of heavy metals in cement products which have been produced from solid wastes and explains how the limits have been calculated. The approach and method used to formulate these criteria were based on EN 12920. The typical exposure scenarios used in this paper involve concrete being used for drinking water supply pipelines and concrete pavements and are based on an analysis of typical applications of cement in China, and the potential for contact with water. The parameters of a tank test which was based on NEN 7375 were set in accordance with the environmental conditions of typical scenarios in China. Mechanisms controlling the release of heavy metals in concrete and a model for that release were obtained using the leaching test. Finally, based on acceptance criteria for drinking water and groundwater quality in China, limit values for the availability of heavy metals in concrete were calculated.  相似文献   

13.
《Resources Policy》2002,28(1-2):39-47
Material flows of concrete from construction and demolition (C&D) waste in Taiwan have grown considerably over the last two decades, Hsiao et al. (2001). This increased flow puts pressure on limited national disposal capacity and has indirectly caused ecological damage to domestic riparian zones used as sources of natural aggregate. Using existing statistics and literature sources for C&D waste generation in Taiwan we have developed a dynamic model of domestic material flows of concrete waste and employ statistical analyses to obtain projections of future material flows. Our major findings are: (1) Taiwan’s rate of waste concrete generation in 2001 for the residential and commercial construction industry was approximately 2.4 Million Metric Tons (MMT) per year, averaging 0.11 metric tons of waste concrete generated annually by each Taiwanese; (2) Around the year 2009, the national rate will more than triple to exceed the spike in C&D concrete waste generation that occurred after the Chi Chi earthquake 9/21/99, 8.5 MMT. (3) Aside from pilot-scale development of waste concrete utilization technology, nationwide recycling rates remain negligible. Without resource recovery, the volume of C&D waste generation by 2009 is projected to occupy nearly 7% of all existing and planned domestic landfill capacity. A target is established to raise resource recovery rates for waste concrete to 50% by 2005 and a 100% nationwide recycling rate by 2009.  相似文献   

14.
在对国内兰炭生产工艺流程应用及现状介绍的基础上,概括总结了旧式低温干馏阶段和现阶段兰炭生产过程中固体废物的产生节点、种类、性质和主要处置方式。结果表明,旧式低温干馏阶段,兰炭生产过程中产生的固体废物主要包括煤筛分破碎工序产生的末煤和煤矸石、筛焦工序产生的焦粉、焦油冷却收集系统产生的焦油渣等;现阶段,兰炭生产过程中产生的固体废物主要包括煤筛分破碎工序产生的末煤和煤矸石以及破碎过程中经除尘器收集的煤尘、筛焦工序产生的焦粉、废水处理污泥、焦油冷却收集系统产生的焦油渣、脱硫工序产生的脱硫残液等。其中末煤、煤矸石、煤尘、焦粉作为一般工业固废全部综合利用,废水污泥、焦油渣、脱硫残液主要掺入原料煤中自行消化处置。  相似文献   

15.
Due to ever increasing quantities of waste materials and industrial by-products, solid waste management is the prime concern in the world. Scarcity of land-filling space and because of its ever increasing cost, recycling and utilization of industrial by-products and waste materials has become an attractive proposition to disposal. There are several types of industrial by-products and waste materials. The utilization of such materials in concrete not only makes it economical, but also helps in reducing disposal concerns. One such industrial by-product is waste foundry sand (SFS). Waste foundry sand is a by-product of ferrous and nonferrous metal casting industries. Foundries successfully recycle and reuse the sand many times in a foundry. When the sand can no longer be reused in the foundry, it is removed from the foundry and is termed as waste foundry sand.Published literature has shown that WFS could be used in manufacturing Controlled Low-Strength Materials (CLSM) and concrete. This paper presents an overview of some of the research published on the use of WFS in concrete. Effect of WFS on concrete properties such as compressive strength, splitting tensile strength, modulus of elasticity, freezing-thawing resistance, and shrinkage are presented.  相似文献   

16.
In this study, controlled low-strength concrete (CLSC) is mixed using different water-to-binder (W/B) ratios (1.1, 1.3 and 1.5) and various percentages of sand substituted by waste LCD glass sand (0%, 10%, 20% and 30%). The properties of the fresh concrete, including compressive strength, electrical resistivity, ultrasonic pulse velocity, permeability ratio and shrinking of the CLSC, are examined. Results show that increases in amount of waste glass added result in better slump and slump flow, longer initial setting time and smaller unit weight. Compressive strength decreases with increasing W/B ratio and greater amounts of waste glass added. Both electrical resistivity and ultrasonic pulse velocity increase with increases in amount of waste glass and decreases in W/B ratio. On the contrary, the permeability ratio increases with increases in W/B ratio, but decreases with greater amounts of waste glass added. CLSC specimens cured for different durations show little changes in length with shrinkage below 0.025%. Our findings reveal that CLSC mixed using waste LCD glass in place of sand can meet design requirements. Recycling of waste LCD glass not only offers an economical substitute for aggregates, but also an ecological alternative for waste management.  相似文献   

17.
Powders of chromite ore processing residue (COPR) were mineralogically evaluated using quantitative X-ray powder diffraction (XRPD) to illustrate the impacts of sample preparation procedures. Chromite ore processing residue is strongly alkaline, reactive, contains minerals of varying hardness and absorption coefficients, and exhibits significant amorphicity. This poses a challenge to produce powders for XRPD analysis that are sufficiently fine and of uniform particle size while avoiding mineral reactions and overgrinding effects. Dry, hand pulverization to different grain sizes, and wet, mechanical pulverization (micromilling) using four milling liquids (cyclohexane, isopropanol, ethanol, and water), and variable milling durations (up to 15 min) were evaluated. Micromilling with a light, nonpolar, highly evaporative liquid such as cyclohexane with a milling time of 5 min mitigated systematic errors such as microabsorption and preferred orientation as it produced finer and more uniform particle size distributions than the hand-pulverized powders, while simultaneously affording the least time for sample preparation. Conversely, the use of water as milling liquid resulted in extensive hydration reactions during sample preparation, causing mischaracterization and significant underestimation of its reactive brownmillerite content, which can complicate the remediation design process for COPR. Hand pulverization emerged as a necessary complement to quantify Cr(VI)-containing, softer minerals destroyed during mechanical milling, the quantification of which has also important implications for COPR treatment design. The findings of this study may be applicable in a variety of geochemically complicated and reactive environmental media (metal-contaminated soils, stabilized/solidified media, inorganic waste), and points to the importance of the sample preparation method to obtain reliable quantitative XRPD results.  相似文献   

18.
废钻井液的处理技术综述   总被引:19,自引:4,他引:15  
通过对近年来国内外废钻井液无害化处理方法进行的综合分析,了解了目前处理现状,并在此基础上,详细介绍了水泥、水玻璃;磷石膏;水泥窑粉等固化技术及生物等治理技术。同时对废钻井液的无害化处理及未来的发展趋势进行了展望。  相似文献   

19.
Solid waste management is one of the major environmental concerns around the world. Cement kiln dust (KKD), also known as by-pass dust, is a by-product of cement manufacturing. The environmental concerns related to Portland cement production, emission and disposal of CKD is becoming progressively significant. CKD is fine-grained, particulate material chiefly composed of oxidized, anhydrous, micron-sized particles collected from electrostatic precipitators during the high temperature production of clinker. Cement kiln dust so generated is partly reused in cement plant and landfilled. The beneficial uses of CKD are in highway uses, soil stabilization, use in cement mortar/concrete, CLSM, etc.Studies have shown that CKD could be used in making paste/mortar/concrete. This paper presents an overview of some of the research published on the use of CKD in cement paste/mortar/concrete. Effect of CKD on the cement paste/mortar/concrete properties like compressive strength, tensile strength properties (splitting tensile strength, flexural strength and toughness), durability (Freeze–thaw), hydration, setting time, sorptivity, electrical conductivity are presented. Use of CKD in making controlled low-strength materials (CLSM), asphalt concrete, as soil stabilizer, and leachate analysis are also discussed in this paper.  相似文献   

20.
An investigation was carried out to establish the physical, mechanical and durability characteristics of an unprocessed pulverised fuel ash (PFA) from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. This was aimed at establishing the suitability of the ash in the construction of the Church Village Bypass (embankment and pavement) and also in concrete to be used in the construction of the proposed highway.Concrete made using binder blends using various levels of PFA as replacement to Portland cement (PC) were subjected to compressive strength tests to establish performance. The concrete was also subjected to sodium sulphate attack by soaking concrete specimens in sulphate solution to establish performance in a sulphatic environment. Strength development up to 365 days for the concrete made with PC–PFA blends as binders (PC–PFA concrete), and 180 days for the PC–PFA paste, is reported.The binary PC–PFA concrete did not show good early strength development, but tended to improve at longer curing periods. The low early strength observed means that PC–PFA concrete can be used for low to medium strength applications for example blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号