首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

2.
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

3.
The dispersion formulation incorporated in the U.S. Environmental Protection Agency's AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwind receptors ranging from 10-m to 100-m from the edge of a major highway in Raleigh, North Carolina. The contributions are computed using the following steps: 1) Evaluate dispersion model estimates with 10-min averaged NO data measured at 7 m and 17 m from the edge of the road during a field study conducted in August, 2006; this step determines the uncertainty in model estimates. 2) Use dispersion model estimates and their uncertainties, determined in step 1, to construct pseudo-observations. 3) Fit pseudo-observations to actual observations of VOC concentrations measured during five periods of the field study. This provides estimates of the contributions of traffic emissions to the VOC concentrations at the receptors located from 10 m to 100 m from the road. In addition, it provides estimates of emission factors and background concentrations of the VOCs, which are supported by independent estimates from motor vehicle emissions models and regional air quality measurements. The results presented in the paper demonstrate the suitability of the formulation in AERMOD for estimating concentrations associated with mobile source emissions near roadways. This paper also presents an evaluation of the key emissions and dispersion modeling inputs necessary for conducting assessments of local-scale impacts from traffic emissions.  相似文献   

4.
Understanding motor vehicle emissions, near-roadway pollutant dispersion, and their potential impact to near-roadway populations is an area of growing environmental interest. As part of ongoing U.S. Environmental Protection Agency research in this area, a field study was conducted near Interstate 440 (I-440) in Raleigh, NC, in July and August of 2006. This paper presents a subset of measurements from the study focusing on nitric oxide (NO) concentrations near the roadway. Measurements of NO in this study were facilitated by the use of a novel path-integrated optical remote sensing technique called deep ultraviolet differential optical absorption spectroscopy (DUV-DOAS). This paper reviews the development and application of this measurement system. Time-resolved near-road NO concentrations are analyzed in conjunction with wind and traffic data to provide a picture of emissions and near-road dispersion for the study. Results show peak NO concentrations in the 150 ppb range during weekday morning rush hours with winds from the road accompanied by significantly lower afternoon and weekend concentrations. Traffic volume and wind direction are shown to be primary determinants of NO concentrations with turbulent diffusion and meandering accounting for significant near-road concentrations in off-wind conditions. The enhanced source capture performance of the open-path configuration allowed for robust comparisons of measured concentrations with a composite variable of traffic intensity coupled with wind transport (R2 = 0.84) as well as investigations on the influence of wind direction on NO dilution near the roadway. The benefits of path-integrated measurements for assessing line source impacts and evaluating models is presented. The advantages of NO as a tracer compound, compared with nitrogen dioxide, for investigations of mobile source emissions and initial dispersion under crosswind conditions are also discussed.  相似文献   

5.
Understanding local-scale transport and dispersion of pollutants emitted from traffic sources is important for urban planning and air quality assessments. Predicting pollutant concentration patterns in complex environments depends on accurate representations of local features (e.g., noise barriers, trees, buildings) affecting near-field air flows. This study examined the effects of roadside barriers on the flow patterns and dispersion of pollutants from a high-traffic highway in Raleigh, North Carolina, USA. The effects of the structures were analyzed using the Quick Urban & Industrial Complex (QUIC) model, an empirically based diagnostic tool which simulates fine-scale wind field and dispersion patterns around obstacles. Model simulations were compared with the spatial distributions of ultrafine particles (UFP) from vehicular emissions measured using a passenger van equipped with a Differential Mobility Analyzer/Condensation Particle Counter. The field site allowed for an evaluation of pollutant concentrations in open terrain, with a noise barrier present near the road, and with a noise barrier and vegetation present near the road.Results indicated that air pollutant concentrations near the road were generally higher in open terrain situations with no barriers present; however, concentrations for this case decreased faster with distance than when roadside barriers were present. The presence of a noise barrier and vegetation resulted in the lowest downwind pollutant concentrations, indicating that the plume under this condition was relatively uniform and vertically well-mixed. Comparison of the QUIC model with the mobile UFP measurements indicated that QUIC reasonably represented pollutant transport and dispersion for each of the study configurations.  相似文献   

6.
Abstract

Understanding motor vehicle emissions, near-roadway pollutant dispersion, and their potential impact to near-roadway populations is an area of growing environmental interest. As part of ongoing U.S. Environmental Protection Agency research in this area, a field study was conducted near Interstate 440 (I-440) in Raleigh, NC, in July and August of 2006. This paper presents a subset of measurements from the study focusing on nitric oxide (NO) concentrations near the roadway. Measurements of NO in this study were facilitated by the use of a novel path-integrated optical remote sensing technique called deep ultraviolet differential optical absorption spectroscopy (DUV-DOAS). This paper reviews the development and application of this measurement system. Time-resolved near-road NO concentrations are analyzed in conjunction with wind and traffic data to provide a picture of emissions and near-road dispersion for the study. Results show peak NO concentrations in the 150 ppb range during weekday morning rush hours with winds from the road accompanied by significantly lower afternoon and weekend concentrations. Traffic volume and wind direction are shown to be primary determinants of NO concentrations with turbulent diffusion and meandering accounting for significant near-road concentrations in off-wind conditions. The enhanced source capture performance of the open-path configuration allowed for robust comparisons of measured concentrations with a composite variable of traffic intensity coupled with wind transport (R2 = 0.84) as well as investigations on the influence of wind direction on NO dilution near the roadway. The benefits of path-integrated measurements for assessing line source impacts and evaluating models is presented. The advantages of NO as a tracer compound, compared with nitrogen dioxide, for investigations of mobile source emissions and initial dispersion under crosswind conditions are also discussed.  相似文献   

7.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

8.
A combined monitoring and dispersion modelling methodology was applied for assessing air quality at three different levels of proximity to the selected service station: (I) next to the fuel pumps, (II) in the surrounding environment, and (III) in the background. Continuous monitoring and passive sampling were used for achieving high temporal and spatial resolution, respectively. A Gaussian dispersion model (CALINE4) was used for assessing the road traffic contribution to the local concentrations under different meteorological conditions. It was established that Stage 2 vapour recovery reduces BTX concentrations not only near the pumps, but also in their surrounding environment. However, there is evidence that the efficiency of the system is wind speed dependent. The modelling simulation of the worst case wind scenario revealed the significance of local traffic emissions. It was shown that the traffic contribution even from a single road in the vicinity of the station can, under certain conditions, be higher than the contribution of the station itself to the local BTX levels. Finally, after comparison with previous studies, the concentrations measured near the service station (which was situated in a rural environment) appear to be lower than those observed in busy street canyons in city centres. It can be concluded, although Stage 2 recovery system effectively reduces working VOC losses in service stations, that it will only have a limited positive impact on local air quality if the service station is located in a heavily polluted area.  相似文献   

9.
Abstract

Transit traffic through the Austrian Alps is of major concern in government policy. Pollutant burdens resulting from such traffic are discussed widely in Austrian politics and have already led to measures to restrict traffic on transit routes. In the course of an environmental assessment study, comprehensive measurements were performed. These included air quality observations using passive samplers, a differential optical absorption spectroscopy system, a mobile and a fixed air quality monitoring station, and meteorological observations. As was evident from several previous studies, dispersion modeling in such areas of complex terrain and, moreover, with frequent calm wind conditions, is difficult to handle. Further, in the case presented here, different pollutant sources had to be treated simultaneously (e.g., road networks, exhaust chimneys from road tunnels, and road tunnel portals). No appropriate system for modeling all these factors has so far appeared in the literature. A prognostic wind field model coupled with a Lagrangian dispersion model is thus presented here and is designed to treat all these factors. A comparison of the modeling system with results from passive samplers and from a fixed air quality monitoring station proved the ability of the model to provide reasonable figures for concentration distributions along the A10.  相似文献   

10.
SCOPE AND BACKGROUND: In the course of the European Council Directive on permissible air pollutant limit values, valid starting from 2005 there is an urgent call for action, particularly for fine dust (PM10). Current investigations (Junk & Helbig 2003, Reuter & Baumüller 2003) show that the limit values in certain places in congested areas are exceeded. Only if it is possible to locate these Hot Spots purposeful measures to reduce the ambient air pollution can be conducted. For an efficient identification of these Hot Spots numerical computer models or establishing special measurements networks are too expensive. Using the statistical model STREET 5.0 (KTT 2003) a cost-effective screening of the air pollution situation caused by the traffic can be done. METHODS: STREET is based on the 3-dimensional micro-scale non-hydrostatic flow- and dispersion model MISCAM (Eichhorn 1989). The results of over 100.000 different calculations with MISCAM are stored in a Database and used to calculate the emissions with STREET. In collaboration with the city council of Trier more than 150 streets were investigated, mapped, and calculated. A special urban climate measuring network supplies the necessary meteorological input data about the wind field and precipitation events in the valley of the Moselle. Information about road width and road orientation as well as building density was derived from aerial photographs. Traffic censuses and mobile air pollutants measurements supplied the remaining input data. We calculated the mean annual air pollutant concentrations for NO2, CO, SO2, O3, benzene as well as PM10. RESULTS: A comparison of the model results with the values obtained from the stations of the central emission measuring network of Rhineland-Palatinate (ZIMEN, annual report 2002) shows very good agreements. The model was not only used to calculate the annual air pollutant but also for urban planning and management. The absolute level of the air pollutant is mainly dependent on the amount of traffic in the street canyons. Therefore four different case-scenarios with varying quantity of traffic were calculated and interpreted for each street. The results of the calculation show that on the basis of the mean values for both NO2 and benzene, it is not to be expected that the limits PERSPECTIVES: Furthermore the model can be used to find the maximum tolerable numbers of cars for a street without exceeding the air pollutant thresholds.  相似文献   

11.
The contribution of vehicular traffic to air pollutant concentrations is often difficult to establish. This paper utilizes both time-series and simulation models to estimate vehicle contributions to pollutant levels near roadways. The time-series model used generalized additive models (GAMs) and fitted pollutant observations to traffic counts and meteorological variables. A one year period (2004) was analyzed on a seasonal basis using hourly measurements of carbon monoxide (CO) and particulate matter less than 2.5 μm in diameter (PM2.5) monitored near a major highway in Detroit, Michigan, along with hourly traffic counts and local meteorological data. Traffic counts showed statistically significant and approximately linear relationships with CO concentrations in fall, and piecewise linear relationships in spring, summer and winter. The same period was simulated using emission and dispersion models (Motor Vehicle Emissions Factor Model/MOBILE6.2; California Line Source Dispersion Model/CALINE4). CO emissions derived from the GAM were similar, on average, to those estimated by MOBILE6.2. The same analyses for PM2.5 showed that GAM emission estimates were much higher (by 4–5 times) than the dispersion model results, and that the traffic-PM2.5 relationship varied seasonally. This analysis suggests that the simulation model performed reasonably well for CO, but it significantly underestimated PM2.5 concentrations, a likely result of underestimating PM2.5 emission factors. Comparisons between statistical and simulation models can help identify model deficiencies and improve estimates of vehicle emissions and near-road air quality.  相似文献   

12.
Transit traffic through the Austrian Alps is of major concern in government policy. Pollutant burdens resulting from such traffic are discussed widely in Austrian politics and have already led to measures to restrict traffic on transit routes. In the course of an environmental assessment study, comprehensive measurements were performed. These included air quality observations using passive samplers, a differential optical absorption spectroscopy system, a mobile and a fixed air quality monitoring station, and meteorological observations. As was evident from several previous studies, dispersion modeling in such areas of complex terrain and, moreover, with frequent calm wind conditions, is difficult to handle. Further, in the case presented here, different pollutant sources had to be treated simultaneously (e.g., road networks, exhaust chimneys from road tunnels, and road tunnel portals). No appropriate system for modeling all these factors has so far appeared in the literature. A prognostic wind field model coupled with a Lagrangian dispersion model is thus presented here and is designed to treat all these factors. A comparison of the modeling system with results from passive samplers and from a fixed air quality monitoring station proved the ability of the model to provide reasonable figures for concentration distributions along the A10.  相似文献   

13.
The wind flow field around urban street-building configurations has an important influence on the microscale pollutant dispersion from road traffic, affecting overall dilution and creating localised spatial variations of pollutant concentration. As a result, the “representativeness” of air quality measurements made at different urban monitoring sites can be strongly dependent on the interaction of the local wind flow field with the street-building geometry surrounding the monitor. The present study is an initial attempt to develop a method for appraising the significance of air quality measurements from urban monitoring sites, using a general application computational fluid dynamics (CFD) code to simulate small-scale flow and dispersion patterns around real urban building configurations. The main focus of the work was to evaluate routine CO monitoring data collected by Westminster City Council at an intersection of street canyons at Marylebone Road, Central London. Many monitors in the UK are purposely situated at urban canyon intersections, which are thought to be local “hot spots” of pollutant emissions, however very limited information exists in the literature on the flow and dispersion patterns associated with them. With the use of simple CFD simulations and the analysis of available monitoring data, it was possible to gain insights into the effect of wind direction on the small-scale dispersion patterns at the chosen intersection, and how that can influence the data captured by a monitor. It was found that a change in wind direction could result in an increase or decrease of monitored CO concentration of up to 80%, for a given level of traffic emissions and meteorological conditions. Understanding and de-coupling the local effect of wind direction from monitoring data using the methods presented in this work could prove a useful new tool for urban monitoring data interpretation.  相似文献   

14.
The concentrations of platinum group elements (PGE; platinum, palladium, rhodium) and 17 other elements in mosses growing at 32 sampling sites along 12 roads in Austria were analysed. The study included passive monitoring of naturally growing mosses with an experimental design using mosses samples exposed in a tunnel experiment. PGEs (Pt, Pd, Rh) were analysed by ICP-MS (ELAN DRC II, Perkin Elmer SCIEX) according to EN ISO 17294-2 Tl.29. Mean concentrations of PGEs in five moss species were: Pt 7.07±9.97, Pd 2.8±5.2 und Rh 0.6±0.8 ng g−1 dry weight. This is comparable to data derived from measurements of gasoline autocatalyst emissions or airborne particles (<10 μm). Compared to soils and road dust along highways, concentrations in mosses were lower by a factor of ten, compared to grasses they were comparable or somewhat higher. The ratios between the various PGEs were calculated as follows (mean values): Pt/Pd 7.9±10.2, Pt/Rh 12.6±8.3 and Pd/Rh 3.7±2.2. The number of light duty vehicles (<3.5 t) and the distance from the road were the main influential factors for PGE concentrations. Especially strong correlations could be found between Pt and Sb, Cu, Zn, and Cd (in decreasing order), which are all elements derived mainly from road traffic emissions. Cluster analysis (Partioning Around Medoids Method) separated elements derived mainly from soil dust (Ca, Al). An analysis of spatial deposition patterns of PGEs showed a reciprocal decrease of concentrations with increasing distance from the road, reaching background values at distances between 10 and 200 m, sometimes even more, but outside the spatial range of our investigation.  相似文献   

15.
A particle measurement campaign was conducted in a suburban environment near a major road in Kuopio, Central Finland from 3 August to 9 September 1999. The mass concentrations of fine particles (PM2.5) were measured simultaneously at distances of 12, 25, 52 and 87 m from the centre of a major road at a height of 1.8 m, using identical samplers. The concentration measurements were conducted during 16 daytime hours (from 6.00 a.m. to 10.00 p.m.) for 27 days. Traffic flows and relevant meteorological parameters were measured on-site; meteorological measurements from a nearby synoptic weather station were also utilised. We also suggest a preliminary model for predicting the concentrations of PM2.5 and apply this model in order to analyse the measured data. The regionally and long-range transported contribution was evaluated on the basis of a semi-empirical mathematical model utilising as input values the daily sulphate, nitrate and ammonium measurements at the EMEP stations (Co-operative programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe). The influence of primary vehicular emissions from the nearest roads was evaluated using a roadside emission and dispersion model, CAR-FMI, in combination with a meteorological pre-processing model, MPP-FMI. The contribution of non-exhaust particulate matter emissions (including resuspension of particulate matter from road surfaces) was estimated simply to be directly proportional to the concentrations originating from primary vehicular emissions. Comparison of the predicted results and measurements yields information on the relative importance of various source categories of the measured concentrations of PM2.5. The regionally and long-range transported contribution, the primary and non-exhaust vehicular emissions, and other sources were estimated to contribute on average 41±6%, 33±6% and 26±7% of the observed PM2.5 concentrations, respectively. The model presented could also be applied in other European cities for analysing the source contributions to measured fine particulate matter concentrations.  相似文献   

16.
Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.  相似文献   

17.
Air samples were collected using active samplers at various heights of 8, 15, 32, 47, 65, 80, 102, 120, 140, 160, 180, 200, 240, 280 and 320 m on a meteorological tower in an urban area of Beijing in two campaigns in winter 2006. Altitudinal distributions of polycyclic aromatic hydrocarbons (PAHs) in atmospheric boundary layer of Beijing in winter season were investigated. Meteorological conditions during the studied period were characterized by online measurements of four meteorological parameters as well as trajectory calculation. The mean total concentrations of 15 PAHs except naphthalene of gaseous and particulate phase were 667±450 and 331±144 ng m−3 in January and 61±19 and 29±6 ng m−3 in March, respectively. Domestic coal combustion and vehicle emission were the dominant PAH sources in winter. Although the composition profiles derived from the two campaigns were similar, the concentrations were different by one order of magnitude. The higher concentrations in January were partly caused by higher emission due to colder weather than March. Moreover, weak wind, passing through the city center before the sampling site, picked up more contaminants on the way and provided unfavorable dispersion condition in January. For both campaigns, PAH concentrations decreased with heights because of ground-level emission and unfavorable dispersion conditions in winter. The concentration ratio of PAHs in gas versus solid phases was temperature dependent and negatively correlated to their octanol–air partition coefficients.  相似文献   

18.
Abstract

Urban-scale air pollutants for sulfur dioxide, nitrogen dioxide, particulate matter with aerodynamic diameter >10 μm, and ozone (O3) were simulated over the Seoul metropolitan area, Korea, during the period of July 2-11, 2002, and their predicting capabilities were discussed. The Air Pollution Model (TAPM) and the highly disaggregated anthropogenic and the biogenic gridded emissions (1 km × 1 km) recently prepared by the Korean Ministry of Environment were applied. Wind fields with observational nudging in the prognostic meteorological model TAPM are optionally adopted to comparatively examine the meteorological impact on the prediction capabilities of urban-scale air pollutants. The result shows that the simulated concentrations of secondary air pollutant largely agree with observed levels with an index of agreement (IOA) of >0.6, whereas IOAs of ~0.4 are found for most primary pollutants in the major cities, reflecting the quality of emission data in the urban area. The observationally nudged wind fields with higher IOAs have little effect on the prediction for both primary and secondary air pollutants, implying that the detailed wind field does not consistently improve the urban air pollution model performance if emissions are not well specified. However, the robust highest concentrations are better described toward observations by imposing observational nudging, suggesting the importance of wind fields for the predictions of extreme concentrations such as robust highest concentrations, maximum levels, and >90th percentiles of concentrations for both primary and secondary urban-scale air pollutants.  相似文献   

19.
Background The development of the city of Patras, including harbour relocation, in conjunction with the protection of the regional ecosystems, requires air quality assessment and management. For this reason, a model applicable in the Patras area is necessary and valuable. The goal of this study was to validate a model suitable for predicting the dispersion of sulfur dioxide (SO2), based on particular activity, topography and weather conditions. Methods We used the US-EPA ISCLT3 integral dispersion model to predict SO2 concentrations for Patras, Greece. We assumed that the major contribution to Patras air pollution came from central heating, harbour and traffic. We calculated traffic emissions using COPERTIII. Results and Discussion Assigning suitable values of the mixing height, the model predicted the local and spatial distribution of the mean monthly SO2 concentrations in downtown Patras, as well computed the contribution of the SO2 emissions originating from each particular source at each receptor location on a seasonal and annual basis. The comparison between predictions and measurements shows that the model performance for estimating the SO2 concentrations and period pattern is satisfactory. Conclusion The mixing height was the critical parameter for calibrating the model. Model validation promises satisfactory predictions for SO2 pollution levels on monthly basis. Recommendations and Outlook The model could be used in predicting SO2 concentrations and source contribution for several downtown Patras receptors using pertinent meteorological and emission information. It could be also extended to predict the dispersion of other primary air pollutants. The calibrated model predictions could be used to fill gaps in monitoring data, saving money and time, and help in assess and manage air quality as Patras develops.  相似文献   

20.
Bimonthly integrated measurements of NO2 and NH3 have been made over one year at distances up to 10 m away from the edges of roads across Scotland, using a stratified sampling scheme in terms of road traffic density and background N deposition. The rate of decrease in gas concentrations away from the edge of the roads was rapid, with concentrations falling by 90% within the first 10 m for NH3 and the first 15 m for NO2. The longer transport distance for NO2 reflects the production of secondary NO2 from reaction of emitted NO and O3. Concentrations above the background, estimated at the edge of the traffic lane, were linearly proportional to traffic density for NH3 (microg NH3 m(-3) = 1 x 10(-4) x numbers of cars per day), reflecting emissions from three-way catalysts. For NO2, where emissions depend strongly on vehicle type and fuel, traffic density was calculated in terms of 'car equivalents'; NO2 concentrations at the edge of the traffic lane were proportional to the number of car equivalents (microg NO2 m(-3) = 1 x 10(-4) x numbers of car equivalents per day). Although absolute concentrations (microg m(-3)) of NH3 were five times smaller than for NO2, the greater deposition velocity for NH3 to vegetation means that approximately equivalent amounts of dry N deposition to road side vegetation from vehicle emissions comes from NH3 and NO2. Depending on traffic density, the additional N deposition attributable to vehicle exhaust gases is between 1 and 15 kg N ha(-1) y(-1) at the edge of the vehicle lane, falling to 0.2-10 kg N ha(-1) y(-1) at 10 m from the edge of the road.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号