首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
罗玉  黄沙沙  张甜  孙健  沈振兴 《环境科学》2023,44(4):1882-1889
大气细颗粒物(PM2.5)通过产生活性氧(ROS)对健康造成不利影响.酸性、中性和高极性水溶性有机物(WSOM)是有机气溶胶中产生ROS的重要成分.采集西安市区2019年冬季PM2.5样品,深入探究不同极性水平WSOM组分的污染特征和健康风险.结果表明,西安市PM2.5中ρ(WSOM)为(4.62±1.89)μg·m-3,类腐殖质物质(HULIS)是WSOM的重要组成部分(78.81%±10.50%),霾天HULIS的占比更高.三类不同极性WSOM的碳浓度水平在霾天和非霾天大小分别为:中性HULIS(HULIS-n)>酸性HULIS(HULIS-a)>高极性有机物(HP-WSOM)和HULIS-n>HP-WSOM>HULIS-a.采用DCFH(2′,7′-二氯二氢荧光素)法测量其氧化潜势(OP),发现霾天和非霾天单位质量OP(OPm)的规律均为HP-WSOM>HULIS-a>HULIS-n,单位空气体积OP(OPv)特征...  相似文献   

2.
张志豪  陈楠  祝波  陶卉婷  成海容 《环境科学》2022,43(3):1151-1158
基于2019年12月~2020年11月期间武汉市城区大气PM2.5及其主要化学组分(碳质组分、水溶性离子和元素组分)的在线监测数据,分析武汉城区大气PM2.5的污染特征,并利用主成分分析方法和随机森林模型,对PM2.5进行来源解析.结果表明,武汉市大气ρ(PM2.5)冬季最高,为(61.33±35.32)μg·m-3,而夏季最低,为(17.87±10.06)μg·m-3.其中碳质组分以有机碳为主,年均值为(7.27±3.51)μg·m-3,离子组分中ρ(NO3-)、ρ(SO42-)和ρ(NH4+)最高,年均值分别为(11.55±3.86)、(7.55±1.53)和(7.34±1.99)μg·m-3,元素组分中ρ(K)、ρ(Fe)和ρ(Ca)最高,年均值分别为(752.80±183.9...  相似文献   

3.
沈嵩  刘蕾  温维  邢奕  苏伟  孙嘉祺 《环境工程》2022,40(2):71-80
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。  相似文献   

4.
廊坊市是北京市及周边传输通道“2+26”城市之一.为研究廊坊市开发区冬季颗粒物中碳组分污染特征,于2018年1月5日—2月5日在廊坊市开发区国控点位同步开展PM2.5及PM10样品采集,使用DRI分析OC(有机碳)与EC(元素碳)的质量浓度.结果表明:廊坊开发区冬季ρ(PM2.5)、ρ(PM10)分别为(54.5±46.0)(91.0±58.2)μg/m3.PM2.5中ρ(OC)、ρ(EC)分别为14.64、3.54 μg/m3,PM10中分别为17.07、4.58 μg/m3;PM2.5、PM10中ρ(OC)与ρ(EC)相关性均较好,R2均为0.91(P < 0.01),表明二者具有相似的来源;在PM2.5和PM10中OC/EC〔ρ(OC)/ρ(EC),下同〕分别为4.46和4.16,ρ(SOC)(SOC为二次有机碳)分别为6.15和5.88 μg/m3,分别占ρ(OC)的42.1%和37.7%,表明二次污染较严重.碳组分丰度及主成分分析结果表明,PM2.5与PM10中碳组分来源基本一致,主要来源于汽车尾气、水溶性极性化合物、生物质燃烧及燃煤的混合源,柴油车排放,以及道路扬尘.后向气流轨迹聚类结果表明,颗粒物及碳组分质量浓度受途径内蒙古自治区及河北省中部、北京市南部气团的影响较大;对于碳组分来源,道路扬尘及汽车尾气受气团传输的影响较大,而生物质燃烧、燃煤等受气团传输的影响较小.研究显示,汽车尾气、燃烧源及道路扬尘为廊坊市开发区冬季碳组分的主要来源.   相似文献   

5.
为探究北方沿海城市大气PM2.5的化学组分特征及其关键来源,本文选择典型代表城市青岛市作为研究对象,在2021年3月-2022年2月采集大气PM2.5样品,测定水溶性无机离子、碳组分及化学元素等组分,深入分析大气PM2.5化学组分特征,采用正定矩阵因子分解(PMF)和潜在源贡献函数(PSCF)对青岛市PM2.5的主要贡献源类和潜在源区进行分析研究.结果表明:(1)采样期间青岛市PM2.5浓度平均值为42.2μg/m3,NO3-、NH4+、SO42-、OC是PM2.5的主导成分,浓度分别为11.77、5.76、5.20和6.67μg/m3,占比分别为27.88%、13.65%、12.32%和15.80%.(2)各组分浓度季节性变化与PM2.5浓度变化基本一致,呈现冬季最高、夏季最低,春...  相似文献   

6.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

7.
北京冬季PM2.5中元素碳、有机碳的污染特征   总被引:19,自引:2,他引:17  
通过2003年1月对北京市区PM2.5中元素碳(EC)、有机碳(OC)连续测量,分析了其污染特征。监测资料表明,北京市区PM2.5中ρ(OC)高于ρ(EC),它们多在夜间高、白天低,且变化趋势大致相同。北京市区冬季ρ(OC) ρ(EC)的值较低。   相似文献   

8.
基于稳定同位素技术与正定矩阵因子分解(PMF)模型,探究黄石市城区大气PM2.5中碳氮组分的污染特征和来源.结果表明,黄石市城区大气PM2.5中总碳浓度[ρ(TC)]与总碳同位素组成(δ13CTC)均呈冬高夏低的季节性变化特征,夏季分别为(4.4±1.2)μg·m-3和(-26.3±0.5)‰,冬季分别为(9.9±3.5)μg·m-3和(-25.5±0.5)‰;总氮浓度[ρ(TN)]在夏季[(9.1±9.1)μg·m-3]明显低于冬季[(62.4±26.4)μg·m-3],而总氮同位素组成(δ15NTN)在夏季[(12.8±1.9)‰]较冬季[(2.9±4.0)‰]明显富集.除本地源贡献外,黄石市PM2.5中碳氮组分主要受湖南北部近距离区域排放和西北方向远距离传输影响.贝叶斯混合模型(MixSIAR)与PMF模型解析出机动车排放源为PM2...  相似文献   

9.
为了探究保定市郊区2018年冬季PM2.5氧化潜势的特征及其影响来源,利用二硫苏糖醇(DTT)测定法对PM2.5中活性氧进行测定,采用皮尔逊相关分析PM2.5中各化学成分与氧化潜势的关系,并且利用PMF对DTTv进行污染源解析.结果表明,冬季保定市ρ(PM2.5)平均值为(140.96±70.67)μg·m-3,高于同时期北京PM2.5浓度.氧化潜势的DTTv和DTTm值均表现出白天高于夜间的情况[DTTv白天为(2.37±0.76) nmol·(min·m3-1,夜间为(2.14±1.17) nmol·(min·m3-1; DTTm白天为(0.96±0.60) pmol·(min·μg)-1,夜间为(0.76±0.41) pmol·(...  相似文献   

10.
2015~2019年南京北郊碳质气溶胶组成变化   总被引:2,自引:2,他引:0  
碳质气溶胶是大气细颗粒物的重要组成,对空气质量、人体健康和气候变化有着重要影响.为了探究碳质气溶胶在减排背景下的长期变化,本研究测定了南京北郊5 a(2014年12月17日至2020年1月5日) PM2.5样品的有机碳(OC)和元素碳(EC)浓度.结果表明,ρ(OC)和ρ(EC)5a平均值分别为(10.2±5.3)μg·m-3和(1.6±1.1)μg·m-3,其中OC占PM2.5的31.1%,EC占PM2.5的5.2%.OC和EC均呈现出冬高夏低的季节特征.通过非参数的Mann-Kendall检验和Sen’s斜率发现,OC和PM2.5的浓度整体呈显著下降趋势[OC:P<0.000 1,-0.79μg·(m3·a)-1,-0.29%·a-1; PM2.5:P<0.000 1,-4.59μg·(m3·a)-1,-1.5...  相似文献   

11.
城市主要大气污染物时空分布特征及其相关性   总被引:1,自引:0,他引:1       下载免费PDF全文
为制订合理的大气污染物减排措施,利用中国环境监测总站公布的2015年1-12月299座城市实时发布的环境空气颗粒物(PM2.5和PM10)及气态污染物(CO、NO2和SO2)的质量浓度数据,对其进行了时空分布特征及其相关性研究.结果表明:① 2015年城市环境空气颗粒物污染严重,299座城市的ρ(PM2.5)、ρ(PM10)年均值分别主要集中在25~60和40~110 μg/m3,年均值达到GB 3095-2012《环境空气质量标准》二级标准的城市所占比例分别仅为24%和38%.② 城市大气污染物浓度具有明显的季节性特征,基本呈冬季>春秋季>夏季的趋势,其中冬季ρ(PM2.5)、ρ(PM10)、ρ(CO)、ρ(NO2)、ρ(SO2)分别为(73±27)(114±42)(1.49±0.61)(36±14)(42±33)μg/m3.③ 高ρ(PM2.5)和ρ(PM10)主要集中在华北平原,年均值分别为(70±16)(117±22)μg/m3;高ρ(CO)主要出现在山西省,年均值为(1.76±0.48)mg/m3;高ρ(NO2)主要分布在京津冀、山东省和长江三角洲,年均值分别为(42±6)(39±9)(34±8)μg/m3;高ρ(SO2)主要分布在山西、山东两省,年均值分别为(54±10)(41±16)μg/m3.④ Pearson相关系数研究表明,我国城市环境空气颗粒物与气态污染物具有较强的复合性,并且具有秋冬季明显强于春夏季的季节性特征.研究显示,我国城市大气污染具有较强的季节性、区域性与复合性,在降低环境空气颗粒物浓度的同时,对气态污染物的削减也不容忽视.   相似文献   

12.
利用2017年10月~2018年8月的PM10、PM2.5、PM1质量浓度数据以及NCEP全球再分析气象资料,分析乌鲁木齐市区和南郊山区颗粒物浓度变化特征,结合HYSPLIT后向轨迹模型、潜在源贡献因子分析(PSCF)以及浓度权重轨迹分析(CWT)分析市区颗粒物潜在源区.研究结果表明:①市区PM2.5的超标天数为26d,南郊山区无PM2.5超标,市区PM10的超标天数是南郊山区的3.5倍,市区日均值及月均值质量浓度是南郊山区的2~7倍,市区呈现冬高夏低的季节特征,南郊山区春季最高;②乌鲁木齐市区PM10日变化存在3个峰值,PM2.5、PM1为双峰型分布,南郊山区均呈双峰分布;并存在季节性周末效应;③长短两支聚类气流轨迹对乌鲁木齐市区颗粒物浓度影响较大,春夏气流来自中亚,秋冬来源于北疆周边地区;④颗粒物潜在源区分布季节特征显著,高值区主要为昌吉、巴州、吐鲁番等周边地区,西北部中亚地区也是颗粒物重要来源区域之一.  相似文献   

13.
为深入了解渭南市街区道路环境颗粒物污染时空分布特征,利用车载颗粒物传感器于2019年3月1日—5月31日对渭南市道路环境空气中PM2.5和PM10浓度开展在线走航测量,分析了影响渭南市道路环境颗粒物污染时空分布的主要因素.研究表明:①渭南市区内所有道路PM2.5平均浓度范围为37.7~51.9 μg/m3,浓度较高路段位于高新区东部和主城区;PM2.5~10(粗颗粒物)平均浓度范围为65.8~119.1 μg/m3,浓度较高路段位于各功能区城郊.②工作日早高峰时段(07:00—09:00)主城区道路环境PM2.5、PM2.5~10污染较非工作日严重,3种类型道路工作日07:00 PM2.5~10平均浓度呈支路(103.5 μg/m3)>主干道(102.1 μg/m3)>次干道(96.9 μg/m3)的特征.③对于高新区和老城区路段,除早晚高峰时段出现PM2.5和PM2.5~10浓度峰值外,凌晨时段渣土车行驶路段、裸地或施工现场周边路段易出现PM2.5~10浓度峰值,其PM2.5~10平均浓度最高达230.9 μg/m3(乐天大街西段的路段Ⅳ).研究显示,工作日早晚高峰时段,特别是早高峰,机动车排放导致渭南市高新区东部和主城区路段的PM2.5污染加重,夜间渣土车行驶导致高新区和老城区靠近城郊路段的颗粒物(PM2.5和PM2.5~10)污染加重.   相似文献   

14.
为研究京津冀地区典型城市大气细颗粒物及其碳质组分的时空变化特征及来源,于2016年12月28日—2017年1月22日及2017年7月1—26日,对北京市与石家庄市PM2.5(细颗粒物)及PM1(亚微米颗粒物)进行采集,使用DRI(热光碳分析仪)检测PM2.5与PM1中ρ(OC)与ρ(EC),并对其碳质组分来源进行分析.结果表明:①采样期间,冬、夏两季PM2.5与PM1中ρ(OC)均为石家庄市采样点远高于北京市采样点;冬季PM2.5与PM1中ρ(EC)均为石家庄市采样点高于北京市采样点,夏季则略有不同.②冬季污染日,北京市采样点ρ(PM2.5)与ρ(PM1)均为石家庄市采样点的1.08倍,PM2.5与PM1中的ρ(OC)分别为石家庄市采样点的1.14和1.12倍,石家庄市采样点PM2.5与PM1中ρ(EC)分别为北京市采样点的1.15和1.28倍;冬季重污染日,北京市采样点的ρ(PM2.5)与ρ(PM1)分别为石家庄市采样点的1.03和1.04倍,PM2.5和PM1中的ρ(OC)分别为石家庄市采样点的1.23和1.22倍,石家庄市采样点PM2.5和PM1中的ρ(EC)分别为北京市采样点的1.03和1.16倍.夏季污染日,石家庄市采样点ρ(PM2.5)与ρ(PM1)分别为北京市采样点的1.16和1.30倍,PM2.5与PM1中ρ(OC)分别为北京市采样点的1.64和2.71倍,两个采样点ρ(EC)相近.③冬、夏两季PM2.5与PM1中ρ(SOC)/ρ(OC)均较高,冬季北京市采样点分别为48.09%和54.29%,石家庄市采样点分别为44.98%和48.09%,夏季北京市采样点分别为48.47%和61.50%,石家庄市采样点分别为61.52%和63.55%,表明SOC更易富集于亚微米粒子中.④冬季北京市和石家庄市两个采样点PM2.5与PM1中碳质组分均主要来源于生物质燃烧、燃煤和机动车尾气;夏季北京市采样点PM2.5与PM1中碳质组分主要来源于机动车尾气,石家庄市采样点PM2.5与PM1中碳质组分主要来源于燃煤和机动车尾气.研究显示,北京市和石家庄市两个采样点大气细颗粒物及其碳质组分浓度存在时空分布和污染来源差异.   相似文献   

15.
西宁市PM2.5水溶性无机离子特征及其来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨西宁市PM2.5水溶性无机离子的特征及其来源,于2017年1月-2018年4月在西宁市开展PM2.5样品采集工作,使用离子色谱仪分析水溶性无机离子.结果表明:西宁市大气中ρ(PM2.5)平均值为(42.7±36.6)μg/m3,4个采样点ρ(PM2.5)大小顺序依次为市区(54.9 μg/m3)>工业区(44.1 μg/m3)>郊区(40.8 μg/m3)>农村(28.3 μg/m3);ρ(PM2.5)季节性分布特征明显,呈冬季最高、夏季最低的特征.SNA(为SO42-、NO3-和NH4+的统称)是最主要的水溶性离子,占总水溶性离子的66.3%,SNA季节性分布特征为冬季最高、夏季最低.4个采样点SOR(硫氧化率)和NOR(氮氧化率)平均值均大于0.10,说明SO42-和NO3-主要来源于二次转化.采样期间PM2.5中ρ(NO3-)/ρ(SO42-)为0.72,表明燃煤源排放大于交通源排放.主成分分析显示,西宁市PM2.5水溶性离子来源主要为二次粒子源、工业源、扬尘源和燃烧源.研究显示,西宁市城区、工业区、郊区大气中ρ(PM2.5)平均值均超过GB 3095-2012《环境空气质量标准》一级标准限值,建议减少PM2.5的产生应以控制二次粒子源、工业源、燃烧源和扬尘源为主.   相似文献   

16.
济南市大气颗粒物背景值确定方法   总被引:1,自引:0,他引:1       下载免费PDF全文
城市大气颗粒物背景值的确定能够为制订城市大气颗粒物污染防治目标提供重要基础支撑,探索大气颗粒物背景值确定方法对于大气污染防治具有重要意义.以济南市清洁对照点跑马岭监测数据为基础,直接采用概率密度法计算得到的ρ(PM10)和ρ(PM2.5)背景值范围分别是100~110和40~50 μg/m3.综合应用空气质量模型模拟法和概率密度法,提出基于数值模拟的城市大气颗粒物环境背景值确定方法,并在此基础上确定了济南市大气颗粒物背景值.结果表明:济南市ρ(PM10)和ρ(PM2.5)背景值范围分别是30~35和15~20 μg/m3,其中ρ(PM10)环境背景值秋季(40~45 μg/m3)最高、夏季(25~30 μg/m3)最低;ρ(PM2.5)环境背景值秋季(25~30 μg/m3)最高、冬季(10~15 μg/m3)最低.研究显示,基于数值模拟计算得到的颗粒物背景值明显低于直接采用概率密度法得到的结果,表明跑马岭受人为因素影响明显,监测结果已不能完全代表济南市大气颗粒物背景值水平;而数值模拟法可以完全剔除了人为源的贡献,计算得到较为准确的ρ(PM10)和ρ(PM2.5)背景值.   相似文献   

17.
于2011年夏季(6月13日—7月2日)和冬季(11月30日—12月12日)在天津市某老年社区采集室内与老年人个体暴露PM2.5样品,分析二者的质量浓度及化学组分特征. 结果表明:夏、冬季室内ρ(PM2.5)分别为(138±103)和(173±136)μg/m3,二者差异显著(P<0.05);冬季室内ρ(PM2.5)、ρ(SO42-)和ρ(OC)显著高于夏季(P<0.05),初步推断是由于冬季燃煤取暖排放的大量颗粒物渗透进入室内所致;冬季室内源(如清扫和吸烟)对某些室内PM2.5组分(Al、Ca和Cd)的贡献较夏季显著. 对个体暴露与室内ρ(PM2.5)的相关性分析发现,二者在夏、冬季均显著相关(P<0.05). 在受试老年人时间活动模式基础上,采用COD(分歧系数)评估室内和个体暴露PM2.5化学组成的相似度,结果显示,室内与个体暴露PM2.5的COD在夏、冬季分别为0.34±0.10和0.37±0.12;冬季受试老年人在交通微环境所处时间较长,致使COD大于0.5的样本数所占比例较夏季高. 室内和老年人个体暴露PM2.5的ρ(OC)/ρ(EC)在夏、冬季均相近,说明二者的碳组分来源相似.   相似文献   

18.
为探究典型“组群式”城市——淄博市夏季大气颗粒物中水溶性离子化学特征及来源,于2016年8月对淄博市6个城市点(桓台、张店、临淄、淄川、博山、周村)、2个郊区点(沂源、高青)及1个清洁对照点(鲁山)同步进行PM2.5和PM10采样,分析了大气颗粒物质量浓度及9种水溶性离子的空间分布特征,并利用主成分分析方法探讨了PM2.5和PM10中水溶性离子的主要来源.结果表明:①淄博夏季各点位(清洁对照点除外)PM2.5和PM10质量浓度日均值范围分别为57.2~112和77.4~163 μg/m3,空间分布特征表现为城市点>郊区点>清洁对照点;各点位PM2.5/PM10(质量浓度之比)在0.61~0.80之间,表明淄博夏季大气颗粒物污染以PM2.5为主.②水溶性离子在PM2.5和PM10中占比分别为53.3%和48.5%,其中二次无机离子分别占总离子浓度的91.4%和83.7%,表明大气颗粒物主要以二次离子为主,并且主要富集在PM2.5中;PM2.5中∑阴离子/∑阳离子(摩尔浓度之比)为1.07,PM10中该比值为0.87,说明PM2.5接近中性,而PM10呈弱碱性.③淄博夏季各点位离子来源具有一定的空间差异性,城市点、郊区点与清洁对照点间的CD(分歧系数)均高于0.2,而城市点间CD值低于0.2,说明城市点位间的水溶性离子的化学性质较为相似.④主成分分析表明,淄博夏季大气PM2.5中的水溶性离子可能主要来源于工业源、生物质锅炉、燃煤、二次源、道路尘及建筑尘,而PM10中的离子主要来源于道路尘、建筑尘、海盐及二次源.研究显示,淄博市颗粒物污染严重,具有明显的空间分布特征,水溶性离子来源复杂,应采取分区、多源控制的污染防治对策.   相似文献   

19.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号