首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This work presents an overall introduction to the Station for Observing Regional Processes of the Earth System–SORPES in Nanjing, East China, and gives an overview about main scientific findings in studies of air pollution-weather/climate interactions obtained since 2011. The main results summarized in this paper include overall characteristics of trace gases and aerosols, chemical transformation mechanisms for secondary pollutants like O3, HONO and secondary inorganic aerosols, and the air pollution–weather/climate interactions and feedbacks in mixed air pollution plumes from sources like fossil fuel combustion, biomass burning and dust storms. The future outlook of the development plan on instrumentation, networking and data-sharing for the SORPES station is also discussed.
  相似文献   

2.
Bottom ash is an inevitable by-product from municipal solid waste (MSW) incineration plants. Recycling it as additives for cement production is a promising disposal method. However, the heavy metals and chlorine are the main limiting factors because of the potential environmental risks and corrosion of cement kilns. Therefore, investigating heavy metal and chlorine characteristics of bottom ash is the significant prerequisite of its reuse in cement industries. In this study, a correlative analysis was conducted to evaluate the effect of the MSW components and collection mode on the heavy metal and chlorine characteristics in bottom ash. The chemical speciation of insoluble chlorine was also investigated by synchrotron X-ray diffraction analysis. The results showed that industrial waste was the main source of heavy metals, especially Cr and Pb, in bottom ash. The higher contents of plastics and kitchen waste lead to the higher chlorine level (0.6 wt.%–0.7 wt.%) of the bottom ash. The insoluble chlorine in the MSW incineration bottom ash existed primarily as AlOCl, which was produced under the high temperature (1250°C) in incinerators.
  相似文献   

3.
Investigation of demulsification of polybutadiene latex (PBL) wastewater by polyaluminum chloride (PAC) indicated that there was an appropriate dosage range for latex removal. The demulsification mechanism of PAC was adsorption-charge neutralization and its appropriate dosage range was controlled by zeta potential. When the zeta potential of the mixture was between -15 and 15 mV after adding PAC, the demulsification effect was good. Decreasing the latex concentration in chemical oxygen demand (COD) from 8.0 g/L to 0.2 g/L made the appropriate PAC dosage range narrower and caused the maximum latex removal efficiency to decrease from 95% to 37%. Therefore, more accurate PAC dosage control is required. Moreover, adding 50 mg/L sulfate broadened the appropriate PAC dosage range, resulting in an increase in maximum latex removal efficiency from 37% to 91% for wastewater of 0.2 g COD/L. The addition of sulfate will favor more flexible PAC dosage control in demulsification of PBL wastewater.
  相似文献   

4.
Methane fermentation process can be restricted and even destroyed by the accumulation of propionate because it is the most difficult to be anaerobically oxidized among the volatile fatty acids produced by acetogenesis. To enhance anaerobic wastewater treatment process for methane production and COD removal, a syntrophic propionate-oxidizing microflora B83 was obtained from an anaerobic activated sludge by enrichment with propionate. The inoculation of microflora B83, with a 1:9 ratio of bacteria number to that of the activated sludge, could enhance the methane production from glucose by 2.5 times. With the same inoculation dosage of the microflora B83, COD removal in organic wastewater treatment process was improved from 75.6% to 86.6%, while the specific methane production by COD removal was increased by 2.7 times. Hydrogen-producing acetogenesis appeared to be a rate-limiting step in methane fermentation, and the enhancement of hydrogen-producing acetogens in the anaerobic wastewater treatment process had improved not only the hydrogen-producing acetogenesis but also the acidogenesis and methanogenesis.
  相似文献   

5.
Effect of different carbon sources on purification performance and change of microbial community structure in a novel A2N-MBR process were investigated. The results showed that when fed with acetate, propionate or acetate and propionate mixed (1:1) as carbon sources, the effluent COD, NH4 +-N, TN and TP were lower than 30, 5, 15 and 0.5 mg?L–1, respectively. However, taken glucose as carbon source, the TP concentration of effluent reached 2.6 mg?L–1. Process analysis found that the amount of anaerobic phosphorus release would be the key factor to determine the above effectiveness. The acetate was beneficial to the growth of Candidatus Accumulibacter associated with biological phosphorus removal, which was the main cause of high efficiency phosphorus removal in this system. In addition, it could eliminate the Candidatus Competibacter associated with glycogen-accumulating organisms and guarantee high efficiency phosphorus uptake of phosphorus accumulating organisms in the system with acetate as carbon source.
  相似文献   

6.
Nitrogen (N) and phosphorus (P) released from the sediment to the surface water is a major source of water quality impairment. Therefore, inhibiting sediment nutrient release seems necessary. In this study, red soil (RS) was employed to control the nutrients released from a black-odorous river sediment under flow conditions. The N and P that were released were effectively controlled by RS capping. Continuous-flow incubations showed that the reduction efficiencies of total N (TN), ammonium (NH 4 + -N), total P (TP) and soluble reactive P (SRP) of the overlying water by RS capping were 77%, 63%, 77% and 92%, respectively, and nitrification and denitrification occurred concurrently in the RS system. An increase in the water velocity coincided with a decrease in the nutrient release rate as a result of intensive water aeration.
  相似文献   

7.
Direct individual analysis using Scanning Electron Microscopy combined with online observation was conducted to examine the S-rich particles in PM2.5 of two typical polluted haze episodes in summer and winter from 2014 to 2015 in Beijing. Four major types of S-rich particles, including secondary CaSO4 particles (mainly observed in summer), S-rich mineral particles (SRM), S-rich water droplets (SRW) and (C, O, S)-rich particles (COS) were identified.We found the different typical morphologies and element distributions of S-rich particles and considered that (C, O, S)-rich particles had two major mixing states in different seasons. On the basis of the S-rich particles’ relative abundances, S concentrations and their relationships with PM2.5 as well as the seasonal comparison, we revealed that the S-participated formation degrees of SRM and SRW would enhance with increasing PM2.5 concentration. Moreover, C-rich matter and sulfate had seasonally different but significant impacts on the formation of COS.
  相似文献   

8.
Many studies have focused on environmental estrogen-related diseases. However, no consistent gene markers or signatures for estrogenicity have been discovered in mammals. This study investigated the estrogenic effects of 17β-estradiol on the prostate in immature male mice. Consistent U-shaped responses were seen in bodyweight, ventral prostate epithelial morphology, and miRNA expression levels. Specifically, most estradiol regulated miRNAs were downregulated at low doses of estradiol (0.2 and 2 mg·kg–1), and whose expression returned to the control level at a larger dose (200 mg·kg–1). The function of these regulated miRNAs is related to the prostate cancer and PI3K-Akt signaling pathways, which is consistent with the function of estradiol. Furthermore, the miRNA-processing machinery, Drosha, in the prostate was also regulated in a similar pattern, which could be a part of the U-shaped miRNA expression mechanism. All of these data indicate that the prostate is a reliable organ for evaluating estrogenic activity and that the typical nonmonotonic dose-response relationship could be used as a novel biomarker for estrogenicity.
  相似文献   

9.
The Environmental Burden of Disease (EBD) approach for outdoor air pollution has been used to calculate premature deaths and average potential years of life lost attributable to air pollution in China over the past 10 years with differences between the North and the South of the country being analyzed. The results indicate that: (1) Between 2004 and 2013, annual premature deaths attributable to outdoor air pollution in China ranged from 350000 to 520000. In 2013, deaths resulting from air pollution in China represented 9.9% of the country’s total deaths. (2) In 2004, the average life expectancy of the Chinese population and the number of potential years of life lost (PYLL) attributable to air pollution was 69.6 and 1.85 years respectively as compared to 74.4 and 0.67 years respectively in 2013. (3) The number of the PYLL attributable to air pollution in the northern regions of China is found to be larger than that of the southern regions. The PYLL figures of the northern and southern regions in 2004 were 2.3 and 1.8 years, respectively, with a difference of 0.5 years, as compared to 1.4 and 0.7 years respectively with a difference of 0.7 years in 2013.
  相似文献   

10.
Flow cytometry (FCM) has been widely used in multi-parametric assessment of cells in various research fields, especially in environmental sciences. This study detected the metabolic activity of Escherichia coli and Staphylococcus aureus by using an FCM method based on 5-cyano-2,3-ditolyltetrazolium chloride (CTC); the accuracy of this method was enhanced by adding SYTO 9 and 10%R2A broth. The disinfection effects of chlorine, chloramine, and UV were subsequently evaluated by FCM methods. Chlorine demonstrated stronger and faster destructive effects on cytomembrane than chloramine, and nucleic acids decomposed afterwards. The metabolic activity of the bacteria persisted after the cytomembranewas damaged as detected using CTC. Low-pressure (LP) UV or medium-pressure (MP) UV treatments exerted no significant effects on membrane permeability. The metabolic activity of the bacteria decreased with increasing UV dosage, and MP-UV was a stronger inhibitor of metabolic activity than LP-UV. Furthermore, the membrane of Gram-positive S. aureus was more resistant to chlorine/chloramine than that of Gram-negative E. coli. In addition, S. aureus showed higher resistance to UV irradiation than E. coli.
  相似文献   

11.
In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NO x and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).
  相似文献   

12.
The development of cost-effective and highly efficient anode materials for extracellular electron uptake is important to improve the electricity generation of bioelectrochemical systems. An effective approach to mitigate harmful algal bloom (HAB) is mechanical harvesting of algal biomass, thus subsequent processing for the collected algal biomass is desired. In this study, a low-cost biochar derived from algal biomass via pyrolysis was utilized as an anode material for efficient electron uptake. Electrochemical properties of the algal biochar and graphite plate electrodes were characterized in a bioelectrochemical system (BES). Compared with graphite plate electrode, the algal biochar electrode could effectively utilize both indirect and direct electron transfer pathways for current production, and showed stronger electrochemical response and better adsorption of redox mediators. The maximum current density of algal biochar anode was about 4.1 times higher than graphite plate anode in BES. This work provides an application potential for collected HAB to develop a cost-effective anode material for efficient extracellular electron uptake in BES and to achieve waste resource utilization.
  相似文献   

13.
Pulsed plate bioreactor (PPBR) is a biofilm reactor which has been proven to be very efficient in phenol biodegradation. The present paper reports the studies on the effect of dilution rate on the physical, chemical and morphological characteristics of biofilms formed by the cells of Pseudomonas desmolyticum on granular activated carbon (GAC) in PPBR during biodegradation of phenol. The percentage degradation of phenol decreased from 99% to 73% with an increase in dilution rate from 0.33 h–1 to 0.99 h–1 showing that residence time in the reactor governs the phenol removal efficiency rather than the external mass transfer limitations. Lower dilution rates favor higher production of biomass, extracellular polymeric substances (EPS) as well as the protein, carbohydrate and humic substances content of EPS. Increase in dilution rate leads to decrease in biofilm thickness, biofilm dry density, and attached dry biomass, transforming the biofilm from dense, smooth compact structure to a rough and patchy structure. Thus, the performance of PPBR in terms of dynamic and steady-state biofilm characteristics associated with phenol biodegradation is a strong function of dilution rate. Operation of PPBR at lower dilution rates is recommended for continuous biological treatment of wastewaters for phenol removal.
  相似文献   

14.
Utilizing oil extracted from waste engine oil and waste plastics, by pyrolysis, as a fuel for internal combustion engines has been demonstrated to be one of the best available waste management methods. Separate blends of fuel from waste engine oil and waste plastic oil was prepared by mixing with diesel and experimental investigation is conducted to study engine performance, combustion and exhaust emissions. It is observed that carbon monoxide (CO) emission increases by 50% for 50% waste plastic oil (50WPO:50D) and by 58% for 50% waste engine oil (50WEO:50D) at full load as compared to diesel. Unburnt hydrocarbon (HC) emission increases by 16% for 50WPO:50D and by 32% for 50WEO:50D as compared to diesel at maximum load. Smoke is found to decrease at all loading conditions for 50WPO:50D operation, but it is comparatively higher for 50WEO:50D operation. 50WPO:50D operation shows higher brake thermal efficiency for all loads as compared to 50WEO:50D and diesel fuel operation. Exhaust gas temperature is higher at all loads for 50WPO:50D and 50WEO:50D as compared to diesel fuel operation.
  相似文献   

15.
To further determine the fouling behavior of bovine serum albumin (BSA) on different hydrophilic PVDF ultrafiltration (UF) membranes over a range of pH values, self-made atomic force microscopy (AFM) colloidal probes were used to detect the adhesion forces of membrane–BSA and BSA–BSA, respectively. Results showed that the membrane–BSA adhesion interaction was stronger than the BSA–BSA adhesion interaction, and the adhesion force between BSA–BSA-fouled PVDF/PVA membranes was similar to that between BSA–BSA-fouled PVDF/PVP membranes, which indicated that the fouling was mainly caused by the adhesion interaction between membrane and BSA. At the same pH condition, the PVDF/PVA membrane–BSA adhesion force was smaller than that of PVDF/ PVP membrane–BSA, which illustrated that the more hydrophilic the membrane was, the better antifouling ability it had. The extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory predicts that the polar or Lewis acid–base (AB) interaction played a dominant role in the interfacial free energy of membrane–BSA and BSA–BSA that can be affected by pH. For the same membrane, the pH values of a BSA solution can have a significant impact on the process of membrane fouling by changing the AB component of free energy.
  相似文献   

16.
Mercury enrichment in response to elevated atmospheric mercury concentrations in the organs of rape (Brassica napus) was investigated using an open top chamber fumigation experiment and a soil mercury enriched cultivation experiment. Results indicate that the mercury concentration in leaves and stems showed a significant variation under different concentrations of mercury in atmospheric and soil experiments while the concentration of mercury in roots, seeds and seed coats showed no significant variation under different atmospheric mercury concentrations. Using the function relation established by the experiment, results for atmospheric mercury sources in rape field biomass showed that atmospheric sources accounted for at least 81.81%of mercury in rape leaves and 32.29% of mercury in the stems. Therefore, mercury in the aboveground biomass predominantly derives from the absorption of atmospheric mercury.
  相似文献   

17.
The aim of this study is to analyze the effect of salinity on polycyclic aromatic hydrocarbons (PAHs) biodegradation, community structure and naphthalene dioxygenase gene (ndo) diversity of a halophilic bacterial consortium with the denaturing gradient gel electrophoresis (DGGE) approach. The consortium was developed from oil-contaminated saline soil after enrichment for six times, using phenanthrene as the substrate. The prominent species in the bacterial consortium at all salinities were identified as halophilic bacteria Halomonas, Alcanivorax, Marinobacter, Idiomarina, Martelella and uncultured bacteria. The predominant microbes gradually changed associating with the saline concentration fluctuations ranging from 0.1% to 25% (w/v). Two ndo alpha subunits were dominant at salinities ranging from 0.1% to 20%, while not been clearly detected at 25% salinity. Consistently, the biodegradation occurred at salinities ranging from 0.1% to 20%, while no at 25% salinity, suggesting the two ndo genes played an important role in the degradation. The phylogenetic analysis revealed that both of the two ndo alpha subunits were related to the classic nah-like gene from Pseudomonas stutzeri AN10 and Pseudomonas aeruginosa PaK1, while one with identity of about 82% and the other one with identity of 90% at amino acid sequence level. We concluded that salinity greatly affected halophilic bacterial community structure and also the functional genes which were more related to biodegradation.
  相似文献   

18.
Nutrients and water play an important role in microalgae cultivation. Using wastewater as a culture medium is a promising alternative to recycle nutrients and water, and for further developing microalgae-based products. In the present study, two species of microalgae, Chlorella sp. (high ammonia nitrogen tolerance) and Spirulina platensis (S. platensis, high growth rate), were cultured by using poultry wastewater through a two-stage cultivation system for algal biomass production. Ultrafiltration (UF) or centrifuge was used to harvest Chlorella sp. from the first cultivation stage and to recycle culture medium for S. platensis growth in the second cultivation stage. Results showed the two-stage cultivation system produced high microalgae biomass including 0.39 g·L–1Chlorella sp. and 3.45 g·L–1S. platensis in the first-stage and second-stage, respectively. In addition, the removal efficiencies of NH4+ reached 19% and almost 100% in the first and the second stage, respectively. Total phosphorus (TP) removal reached 17% and 83%, and total organic carbon (TOC) removal reached 55% and 72% in the first and the second stage, respectively. UF and centrifuge can recycle 96.8% and 100% water, respectively. This study provides a new method for the combined of pure microalgae cultivation and wastewater treatment with culture medium recycling.
  相似文献   

19.
As an environmental friendly measure for surface runoff reduction, low impact development (LID) has been applied successfully in urban areas. However, due to high price of land and additional expense for LID construction in highly urbanized areas, the developers of real estate would not like to proceed LID exploitation. Floor area ratio (FAR) refers to “the ratio of a building’s total floor area to the size of the piece of land upon which it is built.” Increasing FAR indicates that the developers can construct higher buildings and earn more money. By means of awarding FAR, the developers may be willing to practice LID construction. In this study, a new residential district is selected as a case study to analyze the tradeoff between the runoff reduction goal achieving by LID practices and the incentive of awarding FAR to promote LID construction. The System for Urban Stormwater Treatment and Analysis IntegratioN (SUSTAIN) model is applied to simulate the runoff reduction under various LID designs and then derive the Pareto-optimal solutions to achieve urban runoff reduction goals based on cost efficiency. The results indicates that the maximum surface runoff reduction is 20.5%. Under the extremity scenarios, the government has options to award FAR of 0.028, 0.038 and 0.047 and the net benefits developers gain are 0 CNY, one million CNYand two million CNY, respectively. The results provide a LID construction guideline related to awarding FAR, which supports incentive policy making for promoting LID practices in the highly urbanized areas.
  相似文献   

20.
Under the Stockholm Convention on Persistent Organic Pollutants (POPs), China is required not only to reduce polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF) but also unintentionally produced polychlorinated biphenyls (PCB), hexachlorobenzene (HCB) and pentachlorobenzene (PeCBz). A baseline of the sources in China that generate these unintentional POPs is needed for both research and regulation purposes. In this paper, we have compiled production data of potential sources in China and assessed them in five-year intervals from 2000 to 2015. Most of these activities experienced changes from rapid growth to slow growth. Measured data for PCB, HCB and PeCBz in samples collected from potential sources in China were reviewed. Most information was associated to thermal processes with high potential of emission, including waste incineration and ferrous and non-ferrous metal production. In addition, high levels of PCB, HCB and PeCBz were found as impurities in a few chlorinated products or as by-products in solvent production, which suggested organochlorine industry might be important sources. Finally, based on the studies reviewed, recommendations for future actions in research and policy as well as a few regulatory issues in China are discussed.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号