首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Local ozone concentration and visible foliar injury were measured over the 1994 growing season on open-grown black cherry (Prunus serotina Ehrh.) trees of varying size (age) within forest stands and adjacent openings at a site in north-central Pennsylvania. Relationships were determined between visible ozone injury and ozone exposure, as well as calculated between injury and ozone uptake expressed as the product of stomatal conductance and ozone concentration. In addition, simultaneous measurements of visible symptoms and leaf gas exchange were also conducted to determine the correlation between visible and physiological injury and ozone exposure. By September, the amount of leaf area affected by visible foliar ozone injury was greatest for seedlings (46%), followed by canopy trees (20%) and saplings (15%). A large amount of variability in foliar ozone symptom expression was observed among trees within a size class. Sum40 and Sum60 (ozone concentration > 40 and > 60 nl liter(-1)) cumulative exposure statistics were the most meaningful indices for interpretation of foliar injury response. Seedlings were apparently more sensitive to ozone injury than larger trees because their higher rates of stomatal conductance resulted in higher rates of ozone uptake. Seedlings also had higher rates of early leaf abscission than larger trees with an average of nearly 30% of the leaves on a shoot abscised by 1 September compared to approximately 5% for larger trees. However, per unit ozone uptake into the leaf, larger trees exhibited larger amounts of foliar injury. The amount of visible foliar injury was negatively correlated (r(2) = 0.82) with net photosynthetic rates, but was not related to stomatal conductance. Net photosynthesis and stomatal conductance thus became uncoupled at high levels of visible foliar injury.  相似文献   

2.
A single 12 h ozone exposure peaking at 0.20 ppm proved phytotoxic to greenhouse-grown 'Cutler 71' soybeans at each growth stage tested from V5 to R6. Visible injury occurred within 40 h on the unifoliodate leaves and middle-aged and older trifoliolates while the younger leaves were free from toxicity symptoms. In some instances visible injury was accompanied by a decrease in chlorophyll and an increase in leaf diffusive resistance. Although nitrogen fixation was not significantly altered except at early pod formation (R3), and nitrate reductase activity was significantly reduced only if the ozone exposure occurred at the time of maximal enzyme activity (V5), nitrogen content of the leaves was reduced by ozone treatment. Shoot dry weight was not affected 40 h after ozone treatment, but root dry weight was significantly reduced. Plants grown with supplemental NO(3)(-) were more sensitive to ozone than those dependent on fixed nitrogen. At plant maturity, there was no evidence of an ozone effect on shoot, root, or seed dry weight, NO(3)(-) -grown plants showed a significant increase in growth and yield over N(2)(-) plants; but no ozone effect was observed, despite the increased foliar sensitivity. Multiple ozone exposures at growth stages V3, R1 and R3 exacerbated the effects noted with a single episode and also reduced nitrogenase activity (reflected in specific and total nodule activity) and shoot and root dry weight. At plant maturity, there was again no evidence of a significant effect of multiple ozone treatment on shoot dry weight or seed yield although root weight remained low. The results would tend to support the hypothesis that older leaves of soybean do not make a significant contribution to seed yield. Although they may be injured by ozone during the reproductive phases of growth, seed yield may not be affected if the younger O(3)-tolerant leaves remain functional.  相似文献   

3.
Responses to ozone of insects feeding on a crop and a weed species   总被引:1,自引:0,他引:1  
The influence of ozone on insect herbivore growth and population development was investigated. Fumigation of both pea (Pisum sativum L.) and dock (Rumex obtusifolius L.) at a range of O(3) concentrations between 21-206 nl litre(-1) produced changes in mean relative growth rates of the aphids Acyrthosiphon pisum Harris and Aphis rumicis L. of between 24 and -6% relative to controls. However, there was no evidence of a dose-related response to O(3) fumigation and no clear differences in aphid response when fumigated with the plant on prefumigated or previously unfumigated plant material. It is suggested that this may, in part, be due to the presence of NO contamination during O(3) fumigation. However, the MRGR of dock aphids was found to be greater on new compared to old leaves as well as the increase on the new growth and decrease on the old growth of fumigated plants relative to unfumigated controls. The size of egg batches of the chrysomelid beetle Gastrophysa viridula Degeer were found to be larger, survival and productivity of larvae was higher, and the food consumption lower on R. obtusifolius fumigated with 70 nl litre(-1) O(3) compared with unfumigated controls. This meant that these beetle larvae consumed less leaf area per mg of production on fumigated leaves probably because of their better nutritional quality and/or reduced leaf defences. However, the rate of development of larvae was similar on fumigated and control plants.  相似文献   

4.
The sensitivity of Cicer arietinum, Vigna mungo and Trigonella foenum-graecum to O(3) has been assessed at different stages of growth and development. Plants of different ages (0, 1, 2, 4 and 6 weeks old) were fumigated with 0 and 120 nl litre(-1) O(3), from 09.30 h to 16.30 h each day for four weeks, in hemispherical chambers located out-of-doors. Seed germination was not affected by O(3) in any of the species, but there were responses (differing between species) on the cotyledons. True leaves were fairly resistant when young but later they became more sensitive. Premature senescence and earlier abscission of leaves (in C. arietinum and T. foenum-graecum) and flowers and abortive fruit drop (in C. arietinum) were also observed. Of the five growth stages examined, 2- and 4-week-old plants seemed to be most sensitive except for Trigonella where sensitivity decreased with increasing age of the plants. The partitioning and distribution of dry matter among different plant parts was also significantly disturbed and root, leaf and stem were adversely affected in a decreasing order. However, the percentage reductions in dry weight per plants for Cicer and Vigna increased with age up to four weeks, then declined abruptly. Growth reductions at the 0- and 6-week-old stages differed only slightly and were very small in magnitude. It may, therefore, be suggested that the plants of these legumes in early stages of exponential growth are more vulnerable to O(3) damage and that the developmental or physiological age is an important factor in O(3) sensitivity.  相似文献   

5.
Polyamines (PA) are known to be involved in the areas of plant physiology and biochemistry which are related to the response of a plant to air pollution. This study examines the role of arginine decarboxylase (ADC), an important rate-limiting enzyme in polyamine synthesis, in barley plants exposed to ozone (O(3)). The activity of ADC increased significantly in O(3)-treated leaves when visible injury was hardly apparent. The increase in ADC activity may be a mechanism to increase the PA levels in O(3)-treated leaves and so minimize the damaging effects of O(3). Supporting this, foliar applications of DL-alpha-difluoromethylarginine (DFMA), a specific inhibitor of ADC, prevented the rise in ADC activity and visible injury was considerable on exposure to O(3). This damage was not due to the foliar sprays, as little visible injury was seen in leaves in the O(3)-free controls. The results are discussed in terms of the roles of PA in conferring O(3) resistance in plants.  相似文献   

6.
The response to ozone (O(3)) of greenness, in terms of estimated total chlorophyll concentration (Chl), of leaves at three plant canopy levels was studied in tomato (Lycopersicon esculentum Mill.) over a 10-day period following O(3) exposure. Plants of the cultivars 'New Yorker' and 'Tiny Tim' were grown at 25/15 degrees or 30/15 degrees day/night temperatures in growth chambers and exposed to 0.00, 0.08, 0.16 or 0.24 microl litre(-1) O(3) for 7 h day(-1) for four consecutive days in controlled environment exposure chambers. Measurement of Chl in the top, middle and bottom canopy leaves with a calibrated SPAD-501 leaf greenness meter indicated that the growth temperatures tested did not significantly influence the response of Chl to O(3). Ozone-induced loss of Chl was widespread in the entire foliage canopy, including foliage which did not demonstrate visible injury. In both cultvars the Chl in leaves at all three canopy levels declined as a function of increasing O(3) concentration when measured 2, 4, 6, 8 and 10 days after the exposure period. However, the slopes for leaves in the top and middle canopies decreased with increasing time after exposure. An analysis of this apparent Chl recovery indicated that leaves in the top and middle canopies exposed to 0.16 and 0.24 microl litre(-1) increased in greenness at a rapid rate after the marked initial decline associated with O(3) treatment. The apparent recovery of the top canopy may have reflected the growth of new leaves and their inclusion in the measurements, but this was not the case for the middle canopy for which the same leaves were measured throughout the post-exposure period. Bottom canopy leaves did not demonstrate significant recovery of Chl.  相似文献   

7.
Bush bean (Phaseolus vulgaris L.) lines 'S156' (O3-sensitive)/'R123' (O3-tolerant) and cultivars 'BBL 290' (O3-sensitive)/'BBL 274' (O3-tolerant) were used to study the effects of O3 on stomatal conductance (gs), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O3 and plasticity of stomatal properties in response to O3. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O3 sensitivity and gs: while 'S156' had higher gs rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. Gs rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O3-tolerant counterparts. Exposure to O3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O3-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O3 concentrations (30 ppb). Exposure to O3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O3-sensitive cultivars.  相似文献   

8.
An Open-Top Chambers experiment on Fagus sylvatica and Quercus robur seedlings was conducted in order to compare the performance of an exposure-based (AOT40) and a flux-based approaches in predicting the appearance of ozone visible injuries on leaves. Three different ozone treatments (charcoal-filtered; non-filtered; and open plots) and two soil moisture treatments (watered and non-watered plots) were performed. A Jarvisian stomatal conductance model was drawn up and parameterised for both species and typical South Alpine environmental conditions, thus allowing the calculation of ozone stomatal fluxes for every treatment. A critical ozone flux level for the onset of leaf visible injury in beech was clearly identified between 32.6 and 33.6 mmolO3 m(-2). In contrast, it was not possible to identify an exposure critical level using the AOT40 index. Water stress delayed the onset of the leaf visible injuries, but the flux-based approach was able to take it into account accurately.  相似文献   

9.
EDU or ethylenediurea (N-[2-(2-oxo-1-imidazolidinyl)ethyl]-N'-phenylurea) has been used in experiments to assess ozone effects on vegetation under field conditions because it provides protection against oxidative damage. Tests have mainly been conducted on crop plants, but for woody species only few reports have provided evidence that it can be used in long-term experiments. In this study we tested the technique of stem injection of EDU to study the effects of ozone exposure on Populus nigra cv. Wolterson over one growing season. Cuttings of Populus nigra were grown in pots in the field and between mid-July and early September plants were repeatedly injected with EDU solution (5 mg/plant) or with water at 14-day intervals. Significant differences were found between EDU- and water-injected plants: water-treated plants had more foliar injury, more chlorotic leaves, and shedding of leaves started earlier, suggesting EDU was effective in preventing visible ozone injury and acceleration of senescence. Photosynthetic rates, measured for one leaf age, showed no differences but were mostly higher for the EDU-treated plants. At the end of the growing season diameter increment was 16% higher and there was a non-significant trend for above-ground biomass to be increased by 9% for the EDU-treated plants. This experiment has provided evidence that for this clone serious ozone damage occurs at relatively low concentrations and that EDU can provide protection against visible injury, as well as against longer term growth reductions.  相似文献   

10.
Alfalfa (Medicago sativa L.) were exposed to O(3) concentrations varying between 118 x 10(-6) microg cm(-3) (0.06 ppm) and 157 x 10(-6) microg cm(-3) (0.08 ppm) for 6 h per day 5 days per week for several weeks. Typical plants were sacrificed weekly, and growth parameters were measured. O(3) reduced overall growth, relative growth rates and unit leaf rates in alfalfa before it was cut, indicating that O(3) had reduced photosynthesis. However, after the alfalfa was cut, these same parameters indicated that in some cases, O(3)-stressed plants had greater photosynthetic rates than controls during regrowth. O(3) also altered dry matter partitioning. Roots were most affected, followed by leaves and stems, respectively. In general, O(3) reduced photosynthate production and reduced the proportion of photosynthate partitioned to roots relative to leaves and stems. This could reduce starch reserves in alfalfa, and be detrimental to stand longevity. However, the post-cutting study indicated that at least some alfalfa cultivars may be able to acclimate to O(3)-stress, though plants did not fully recover from pre-cutting differences.  相似文献   

11.
Because the current critical level of ozone (O(3)) for forest trees is based only on one species, the responses of five deciduous tree species were differentiated in a climate chamber experiment. The number of symptomatic leaves per tree was significantly increased, and stomatal conductance was decreased under 50% ambient+30 nl l(-1) O(3) as compared to 'normal' senescence at 50% ambient [O(3)]. Species with a high stomatal conductance did not show earlier or more leaf injury symptoms. The additional 30 nl l(-1) O(3) induced specific pectinaceous cell wall protrusions, phenolic cell wall incrustations, tonoplast vesicles, and inhomogeneous, condensed/precipitated phenolic material in the vacuoles. Due to added O(3), cell senescence was accelerated with increased electron-density of the cytoplasm, and initial chloroplast degeneration. The slow degeneration process started in mesophyll cells, and expanded into epidermal and finally guard cells. Because of the large variance in biomass between individuals and species, the current critical level is supported by the assessment of visible leaf symptoms rather than growth reduction.  相似文献   

12.
Field studies were conducted at USDA Beltsville Agricultural Research Center, Beltsville, Maryland, in 1984 and 1985 using open-top chambers to acquire information on the responses of 12 soybean (Glycine max L. Merr.) cultivars to O3 stress and to examine the interactions between maturity groups and O3 stress. Cultivars representing Groups III, IV, and V were exposed for approximately 3 months to charcoal-filtered air (CF) and nonfiltered air plus 40 nl litre(-1) O3 (NF + O3). Ozone was added 6 h d(-1), 5 d week(-1) for 13 weeks. The CF effectively reduced the accumulative oxidant exposure (AOX) to less than 1.0 microl litre(-1) h and the NF + O3 treatment approximately doubled the ambient AOX (16.7 microl litre(-1) h) to about 30 microl litre(-1) h. The AOX estimates the total O3 exposure above 30 nl litre(-1) during an entire growing season. Plant growth rates and relative growth rates were reduced by 17.0 and 14.4%, respectively, when averaged over cultivars. Based on growth rates, the Group III cultivars were the most affected by O3 stress. Averaged over cultivars, leaf expansion rates, leaf conductance, and transpiration rates were lower in the NF + O3 treatment compared to the CF control; however, wide variation was found with the stomatal results from field observations. Combined over years and cultivars, grain yield was reduced by an average of 12.5% by O3 stress with 3 of 12 cultivars showing significant reductions. Grain protein content was increased by 0.7% by O3 stress, but cultivar differences were equal to the differences caused by the O3 treatments. Grain oil content was unchanged by the O3 treatments. Group IV cultivars showed the greatest decrease in grain yield due to O3 stress. Multiple regression analyses were calculated using the difference between the CF and NF + O3 treatment as a measure of O3 stress. Significant positive relationships were found among net assimilation rates, plant growth rates, relative growth rates, and leaf expansion rates, which suggest that growth analysis characteristics would be useful in addition to yield in air pollution tolerance improvement studies with soybeans.  相似文献   

13.
Plants of rice (Oryza sativa) and white bean (Phaseolus vulgaris) were exposed to 524 microg m(-3) SO2, 392 microg m(-3) O3 and a mixture of both gases, i.e. 524 microg m(-3) SO2 and 392 microg m(-3) O3 to determine the visible foliar injury and leaf diffusive resistance. Response of leaf diffusive resistance was measured on upper and lower surfaces of leaves, i.e. the two unifoliate leaves of bean and the first, second and third primary leaves of rice. The difference in the response may be due to sensitive guard cells causing stomatal closure in the presence of O3, whilst a low concentration of SO2 caused the stomata to open. Thus, SO2 alone is known to decrease, and O3 tends to increase leaf diffusive resistance. However, exposure to both gases increases or decreases the resistance, depending on the species response.  相似文献   

14.
To study plant growth and yield effects of the antiozonant ethylenediurea (EDU), which is frequently used for ozone crop loss assessments, dose-response studies were carried out with potted bean plants under greenhouse conditions in winter and spring. Two cultivars of Phaseolus vulgaris L., differing in sensitivity to ozone (O(3)), were grown in unfiltered air on a sandy loam rich in organic matter and on a vermiculite-clay mixture. Four treatments of EDU at concentrations from 300 to 800 mg liter(-1) were given as a soil drench during plant development. Foliar symptoms of EDU phytoxicity were observed at all doses, and plant biomass, particularly pod dry weight, was considerably reduced to increasing doses of EDU. Primary and first trifoliate leaf weight in EDU-treated plants increased as did the number of buds, indicating an extension of vegetative growth and a delay of reproductive processes. 'BBL 290' beans, which are O(3)-sensitive, were injured by EDU more than the O(3)-tolerant 'BBL 274'. The phytotoxic effects of EDU were more pronounced in the synthetic growth substrate than in field soil. In a second experiment, EDU was applied in concentrations from 100 to 400 mg liter(-1) to 'BBL 290' plants, exposed to filtered air or simulated levels of O(3) pollution. In field soil, plant growth and biomass partitioning in filtered air was only slightly altered by EDU, although leaf injury due to EDU occurred. In the vermiculite-clay mix, the biomass of most plant organs, particularly that of roots, was linearly reduced with increasing EDU doses. O(3) did not cause any alteration in plant biomass in field soil-grown and EDU-treated plants. Ozone leaf injury, which affected 67% of primary leaf area in non-treated plants, was completely suppressed by EDU doses as low as 100 mg liter(-1). This indicates that low concentrations of EDU, which do not affect plant growth in field soil, provide sufficient protection from O(3) injury. The need for careful EDU dose-response studies prior to field assessments is emphasized.  相似文献   

15.
During the growing season of 1990, five staggered crops of radish (Raphanus sativus L.) were grown in the field, using the cultivars 'Cherry Belle', 'Red Prince', and 'Red Devil B'. Half of the plants received a soil drench (100 ml plant(-1); 100 mg litre(-1) of ethylenediurea (EDU) once, early in plant development. Destructive harvests were carried out at 2-day intervals during vegetative development. Non-linear growth kinetics, derived from Richards' function, were fitted to the dry weight data of the total plant, main organs (shoot and hypocotyl) and to the dry weight ratio between below-ground and above-ground organs. Estimating the parameters of these non-linear functions and testing their differences between EDU-treated and untreated plants unveiled biologically meaningful information on the impact of different levels of ambient ozone (O(3)) during the growth periods. The modified function which was applied to the data of biomass partitioning between the major plant parts was more powerful in detecting transient alterations in assimilate allocation compared to the growth dynamics of individual plant organs. At low levels of O(3), biomass partitioning towards the below-ground sink organs was slightly delayed and finally restricted in EDU-treated plants. When ambient O(3) reached moderate levels, which did not cause visible foliar injury, assimilate partitioning between organs was only insignificantly altered during early growth when EDU-treatments were compared. As growth progressed, however, less assimilates were allocated towards the hypocotyl and roots in the plants not protected by EDU. This pattern was similar in all cultivars tested, but was smallest in 'Cherry Belle', which is known to be sensitive to O(3) with respect to foliar injury. During the 15- to 19-day periods of rapid growth, the O(3)-exposure >80 nl litre(-1) ranged from 0.015 to 0.209 microl litre(-1) O(3) h, which corresponds to 7 h d(-1) mean values between 40 and 50 nl litre(-1) O(3), confirming that ambient ozone did not exceed a moderate level in this study.  相似文献   

16.
The incidence and severity of visible foliar ozone injury on black cherry (Prunus serotina) seedlings and saplings and tall milkweed (Asclepias exaltata) plants in Great Smoky Mountains National Park (GRSM) were determined by surveys along selected trails conducted during late summer 1992. The incidence (% injured plants) of ozone injury on black cherry was 47% and the percent injured leaves/injured plant and average leaf area injured were 43 and 6%, respectively. Maximum severity (avg. leaf area of the most severely injured leaf) was 12%. Black cherry seedlings and saplings exhibiting ozone injury were taller than non-injured plants. When insect feeding was present, it occurred 96% of the time on plants with ozone injury. Significantly more injury (p=0.007) on black cherry (% injured leaves/injured black cherry) occurred in the NW section of GRSM compared with the other Park sections. Regression analyses showed no relationships in ozone injury with respect to aspect, slope or elevation. Tall milkweed was evaluated twice during August for ozone injury. The incidence (% injured plants) of ozone injury was 74 and 79% for the first and second survey, respectively. The percentage of injured leaves per plant from the first to second survey was 63 to 79%, respectively. Tall milkweeds showing ozone injury were taller than the non-injured plants. The percentage of insect-damaged plants was 50% among plants without ozone injury and 60% among ozone-injured plants. Non-injured tall milkweed had fewer flowers and/or pods than the injured plants. Mean leaf area injured increased over time, and mean maximum leaf area injured increased from 8 to 11% during the same period. Regression analyses showed no differences in ozone injury regarding aspect, slope or elevation. Our findings indicate that ozone injury is widespread throughout the Park on sensitive vegetation.  相似文献   

17.
The effects of joint action of SO(2) and HF on three Eucalyptus species were studied by exposing them to combinations of < 13, 122 or 271 microg m(-3) of SO(2) and 0.03, 0.39 or 1.05 microg m(-3) of HF in open top chambers for 120 days. HF and SO(2) reduced the area and weight of immature leaves in all three species, but there were few interactive effects on immature leaves. The response of mature leaves to exposure differed among the species, with the greatest effects on E. calophylla and least effects on E. marginata. The interaction of HF + SO2 had no effect on leaf S concentrations in any of the species, but it reduced leaf F concentrations in E. calophylla and E. gomphocephala. HF increased leaf injury in E. calophylla and E. gomphocephala when simultaneously exposed to 271 microg m(-3) of SO(2), but had no effect at 122 microg m(-3), or on E. marginata. The addition of 271 microg m(-3) of SO(2) increased leaf injury when E. gomphocephala was exposed to 0.39 microg m(-3) of HF and when E. calophylla was exposed to 1.05 microg m(-3) of HF, despite reducing the leaf F concentrations. In some cases the interaction of the pollutants may increase susceptibility to visible injury.  相似文献   

18.
Stomatal ozone uptake, determined with the Jarvis' approach, was related to photosynthetic efficiency assessed by chlorophyll fluorescence and reflectance measurements in open-top chamber experiments on Phaseolus vulgaris. The effects of O3 exposure were also evaluated in terms of visible and microscopical leaf injury and plant productivity. Results showed that microscopical leaf symptoms, assessed as cell death and H2O2 accumulation, preceded by 3-4 days the appearance of visible symptoms. An effective dose of ozone stomatal flux for visible leaf damages was found around 1.33 mmol O3 m−2. Significant linear dose-response relationships were obtained between accumulated fluxes and optical indices (PRI, NDI, ΔF/Fm). The negative effects on photosynthesis reduced plant productivity, affecting the number of pods and seeds, but not seed weight. These results, besides contributing to the development of a flux-based ozone risk assessment for crops in Europe, highlight the potentiality of reflectance measurements for the early detection of ozone stress.  相似文献   

19.
We designed a new gas exchange system that concurrently measures foliar H2O, O3, and CO2 flux (HOC flux system) while delivering known O3 concentrations. Stomatal responses of three species were tested: snapbean, and seedlings of California black oak (deciduous broadleaf) and blue oak (evergreen broadleaf). Acute O3 exposure (120-250 ppb over an hour) was applied under moderate light and low vapor pressure deficits during near steady state conditions. The rate of stomatal closure was measured when the whole plant was placed in the dark. An adjacent leaf on each plant was also concurrently measured in an O3-free cuvette. Under some conditions, direct measurements and calculated foliar O3 flux were within the same order of magnitude; however, endogenously low gs or O3 exposure-induced depression of gs resulted in an overestimation of calculated O3 fluxes compared with measured O3 fluxes. Sluggish stomata in response to light extinction with concurrent O3 exposure, and incomplete stomatal closure likewise underestimated measured O3 flux.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号