首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
Summary. Field observations indicated that hornworms select feeding sites non-randomly on tobacco. We tested the hypotheses that differences in feeding site locations of larvae of Manduca sexta L. and Manduca quinquemaculata (Haworth) (Lepidoptera: Sphingidae) on tobacco could be explained by differential nicotine concentrations within plants and leaves, species-specific responses to nicotine, or pressure exerted by natural enemies. Results showed that third-instar larvae of M. sexta fed more proximally and centrally on the leaf, whereas M. quinquemaculata fed more distally. Within-plant selection of leaves did not differ; both species selected leaves in the middle region of the plant. Nicotine concentrations in a high nicotine genotype, NC95, varied within each leaf, increasing 2—3 fold from the basal to apical portion of the leaf, and within each plant, increasing 7—10 fold from the first fully expanded leaf to the twelfth (lowest) leaf. In laboratory bioassays, both Manduca species responded to nicotine as a feeding deterrent. Electrophysiological studies demonstrated that gustatory organs of both species responded to nicotine at concentrations found in tobacco leaves and that M. quinquemaculata generally showed a less vigorous response to nicotine than M. sexta. Field mortality of M. sexta due to parasitism by Cotesia congregata (Say) and to parasitism and predation combined differed among feeding sites; predation alone did not. Results suggest that although nicotine concentration and species specific responses to nicotine play a role in determining feeding site locations, pressure exerted by natural enemies, especially parasitism by C. congregata, is more important. Received 22 February 2000; accepted 20 July 2001.  相似文献   

2.
Summary. Nicotine tolerance is well known for Manduca sexta. It also occurs in several other sphingids of the subfamilies Macroglossinae and Sphinginae. Only members of the subfamily Smerinthinae appear to be more susceptible to nicotine intoxication. Phylogenetic trees have been reconstructed from mitochondrial 16S rDNA and nuclear DNA to map nicotine tolerance.?The nicotine binding site of both α-subunits of nicotinic acetylcholine receptors (nAChR) have been amplified and sequenced. No apparent amino acid substitution can be seen in the putative nicotine binding site of the α-subunits of nAChR from nicotine tolerant and nicotine sensitive sphingids. Thus, a simple target-site modification can be ruled out as a cause for nicotine tolerance. This finding agrees with feeding experiments: larvae of M. sexta and other sphingids of the Macroglossinae and Sphinginae not only tolerated nicotine, but also many other alkaloids that affect neuroreceptors other than acetylcholine receptors (nAChR, mAChR).?Only 10 to 20% of nicotine injected into larvae of nicotine-tolerant taxa could be recovered later as free nicotine, nicotine N-oxide or cotinine, i.e., 80 to 90% must have been converted to polar conjugates or degradation products which are not detectable with the methods applied. Usually more than 98% of the recoverable alkaloids were found in the faeces. Excretion reached a maximum 6 h after injection in tolerant taxa. Larvae of Manduca sexta, which were reared on a nicotine-rich diet, showed higher nicotine degradation and faster nicotine elimination than na?ve larvae. Application of the cytochrome P450 inhibitor SKF 525A (proadifen) reduced the formation of nicotine N-oxide and the rate of alkaloid degradation. Thus, an inducible detoxification mechanism, coupled with a rapid and inducible excretion, appear to be a strategy in Sphingidae that helps them to live on host plants rich in otherwise toxic secondary metabolites. Received 23 March 2001; accepted 4 August 2001.  相似文献   

3.
Summary. The European plant Thlaspi caerulescens hyperaccumulates zinc in its leaves to concentrations exceeding 2 %. This may represent a defense against herbivory, as shown by reduced feeding on plants grown in high-zinc versus low-zinc substrates. However, the more evolutionarily relevant comparison involves plants whose metal content differs due to genetic rather than environmental causes. In our study, plants were grown in a uniform hydroponic solution containing 10 mg/l Zn. Foliar Zn concentrations were measured, and plants of contrasting Zn concentration were chosen for feeding trials using Pieris napi oleracea larvae. Comparisons revealed no statistically significant preferences when young larvae were used, but highly significant avoidance of high-Zn leaves by later-instar caterpillars, suggesting that hyperaccumulation could evolve in response to the selective pressures of herbivory.  相似文献   

4.
Summary. The defensive secretions of Platyphora kollari beetles (Chrysomelidae) from Brazil contained one oleanene glycoside. This was identified as 3-O-g-D-glucopyranosyl-(l̆)-g-D-glucuronopyranosyl-hederagenin (8), by a combination of 1D and 2D NMR methods (COSY, HMQC, MBC) and SIMS. There were also several amino acid derivatives, including the known non-protein amino acid (Z)-2-amino-3,5-hexadienoic acid (1), the new dipeptide L-n-glutamyl-2-amino-(3Z)-hexenoic acid (4), ethanolamine (7), and a mixture of phosphatidylcholines. Compounds 1 and 7 have already been identified in several leaf beetle taxa. Secretions of Leptinotarsa behrensi contained as major triterpene glycoside 3-O-g-d-glucopyranosyl-(l̅)-g-d-glucuronopyranosyl-oleanolic acid-28-O-g-d-glucopyranoside (9), already isolated from Platyphora opima. Although the host plants of these beetles were devoid of these triterpene glycosides, g-amyrin was shown to be present in three plants on which different species of triterpene-producing chrysomelids had been fed (Mikania micrantha, Ipomoea batatas and Convolvulus arvensis). This suggests that these insects are able to use g-amyrin from their food plant as a precursor to their oleanolic- and hydroxyoleanolic acid glycosides. The distribution of toxins already identified in leaf beetles suggests that amino acid derivatives could be a plesiomorphic character, considering their wide distribution, whereas the secretion of triterpene saponins, probably derived from ubiquitous plant triterpenes, could be an apomorphic character shared by some Doryphorina. The secretion of cardenolides derived from ubiquitous plant phytosterols would be another apomorphic character shared by other Doryphorina and Chrysolinina.  相似文献   

5.
Summary. The tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae) is a specialist on Solanaceae. This host specificity is induced as the larva feeds on solanaceous foliage, so that solanaceous-reared larvae will refuse to feed on other plants. Experiments were designed to determine the role of dietary constituents on the induction of host specificity and the effects of these on development of M. sexta. Choice assays using leaf discs of cowpea, Vigna sinensis (Fabaceae), were used to monitor the isolation of relevant chemical cues from foliage of potato. An aqueous extract of potato foliage strongly stimulated feeding. This extract was partitioned with n-butanol under alkaline conditions to obtain a highly active butanol extract. Reversed phase flash chromatography with a water-methanol gradient gave an active fraction that was used as a supplement for wheat germ-based artificial diet. Larvae reared on this s-diet became dependent on potato allelochemicals for initiation and continuation of feeding activity. These larvae also developed faster than larvae reared on the control p-diet, but no effect on adult mass was detected. Further flash chromatography of the active fraction under alkaline conditions provided a highly active sub-fraction, and semi-preparative HPLC using gradients of water and acetonitrile resulted in the isolation of a single compound. Bioassays indicated that this compound alone can account for host recognition by solanaceous-reared larvae. The results suggest that the mechanism of induced host specificity in M. sexta involves development of dependence on this compound. Received 21 December 1999; accepted 14 March 2000  相似文献   

6.
Bacteria play important roles in plant–herbivore interactions and communicate with each other with chemical signals, often N-acylhomoserine lactones (AHL). Plant responses to these signals may influence resistance to microbial attack, but the effects of these signals on herbivore defense are unstudied. To determine whether AHL influence jasmonate (JA)-mediated herbivore resistance in Nicotiana attenuata, we treated wild-type (WT) and JA-deficient genotypes (antisense expression of NaLOX3) with N-hexanoyl-dl-homoserine lactone (C6-HSL) and measured the performance of Manduca sexta larvae. Larval mass gain on C6-HSL-treated WT plants was equivalent to that on non-treated NaLOX3-silenced plants, but significantly 4.1-fold larger than on untreated WT plants. Mass gain was unaffected by C6-HSL treatment of NaLOX3-silenced plants. Microarray analysis of the plants elicited with C6-HSL and JA inducing fatty acid–amino acid conjugates revealed a down-regulation of a proteinase inhibitor in the C6-HSL-treated WT plants. The results therefore suggest that the increased performance of M. sexta was due to direct or indirect effect of C6-HSL on JA-mediated defenses.  相似文献   

7.
The threatened seagrass Halophila johnsonii Eiseman coexists subtidally with H. decipiens Ostenfeld in southeastern Florida, but only H. johnsonii also occurs intertidally. Pulse amplitude modulated fluorometry and fiber-optic spectrometry were used to investigate the photobiology of two populations of H. johnsonii and H. decipiens in an attempt to explain these distribution patterns. Maximum photosynthetic quantum yields (Fv/Fm) were measured in situ as a function of depth distribution within, and between, these two species at two sites (Jupiter Sound, 26°57′N; 80°04′W, and northern Biscayne Bay, 25°55′N; 80°07′W) along the east coast of Florida, USA, during 6–10 March 2001. Reciprocal transplants at the northern site were used to evaluate the plasticity of photosynthetic patterns and pigment absorption spectra and to gain insights into the mechanisms responsible for variations in the observed depth-distribution patterns. Subtidal-population Fv/Fm values were generally higher for H. johnsonii than for H. decipiens, at both sites. At the northern site, intertidal H. johnsonii had significantly lower Fv/Fm (0.494±0.138) than both subtidal H. johnsonii (0.696±0.045) and subtidal H. decipiens (0.668±0.048). In contrast, at the southern site intertidal H. johnsonii had the highest Fv/Fm (0.663±0.047) and were the largest plants. Fv/Fm values of subtidal plants of both species decreased when they were transplanted into shallow, intertidal beds. Correspondingly, Fv/Fm increased for intertidal H. johnsonii transplanted into the subtidal, 2 m deep beds. Rapid light curves indicated that H. decipiens had lower maximum relative electron transport rates (RETRmax) than did H. johnsonii. In addition, the onset of photoinhibition occurred at lower irradiances for H. decipiens (537–820 μmol photons m−2 s−1) compared to H. johnsonii (1141–2670 μmol photons m−2 s−1). RETRmax values decreased for intertidal H. johnsonii transplanted into subtidal beds, but they increased for both species when transplanted from subtidal to intertidal beds. Absorption spectra for the acetone-soluble leaf pigments of intertidal H. johnsonii exhibited a dominant peak near 345 nm; this UV peak was 30% lower for subtidal plants. Pigment absorption spectra for H. decipiens lacked the 345 nm peak and absorbances, normalized to leaf pairs, were lower across the spectrum. Our results indicate that photosynthetic tolerance to higher irradiances and presence of UV-absorbing pigments (UVP) in H. johnsonii may allow this species to exploit the shallowest waters without competition from the closely related, but UVP-lacking H. decipiens.  相似文献   

8.
Applebaum  S. L.  Holt  G. J. 《Marine Biology》2003,142(6):1159-1167
Laboratory-reared red drum (Sciaenops ocellatus) larvae were used to evaluate the potential of chymotrypsin as an indicator of nutritional condition in marine fish larvae. The response of chymotrypsin activity to food deprivation and reductions in nutrient intake was determined. Enzyme activity declined rapidly to undetectable levels in food-deprived larvae 6–18 days old. Larvae fed poor-quality live prey (starved rotifers, Brachionus plicatilis) exhibited reductions in growth (18%) and enzyme activity (84%) relative to larvae fed high-quality prey (enriched rotifers). Potential sources of variation in chymotrypsin activity unrelated to nutritional status, including diel periodicity, and exogenous enzymes sources were examined. A diel pattern in chymotrypsin activity was detected with an 8.7-fold increase in activity occurring from low to high points during a 24-h period. Highest activity levels occurred late in the day (1600 hours) and lowest activity in the morning prior to feeding (0800 hours). The estimated contribution of exogenous enzymes from prey in the digestive tract to measurements of larval enzyme activity was small, reaching a maximum of 4.1% on day 18 in well-fed larvae. Results indicate that exogenous enzymes will not lead to the misclassification of larvae in poor condition. A relationship between chymotrypsin activity and standard length was established for well-fed and food-deprived larvae that could potentially be used to determine the nutritional condition of wild-caught larvae.  相似文献   

9.
Summary. Jasmonic acid (JA) is a wound-related hormone found in most plants that, when applied exogenously, can induce increases in levels of chemical defenses in patterns similar to those induced by mechanical damage or insect feeding. Relative to responses to insect and pathogen attack, chemical responses of herbaceous plants to mammalian herbivore attack have been little studied. In a field experiment, we compared the effects of JA treatment and naturally occurring mammalian herbivory on the expression of trypsin inhibitors, glucosinolates, peroxidase activity and growth of wild mustard (Brassica kaber). Exogenous JA significantly increased trypsin inhibitor activity and glucosinolate concentration, and moderately increased peroxidase activity in the eighth true leaves of five-week-old plants, relative to untreated controls. In contrast, levels of these chemical defenses in the eighth true leaves or in regrowth foliage of plants that had ∼80% of their leaf area removed by groundhogs (Marmota monax) did not differ from that in undamaged and untreated controls. Although exogenous JA significantly elevated levels of chemical defenses, it did not affect height of plants through the season and only slightly reduced time to first flower. Groundhog herbivory significantly reduced height and delayed or abolished flowering, but these effects were not substantial unless coupled with apical meristem removal. We hypothesize that the lack of effect of groundhog herbivory on chemical defenses may be due in part to the speed and pattern of leaf area removal by groundhogs, or physiological constraints caused by leaf area loss. Despite having no effect on chemical defense production, leaf area loss by groundhogs was more costly to growth and fitness than the effects of JA application in this study, but only substantially so if coupled with apical meristem removal. We suggest that in general, costs of defense production in plants are likely to be minimal when compared to the risk of losing large amounts of leaf area or primary meristematic tissue. Thus, if they are effective at deterring herbivory, the benefits of inducible defense production likely outweigh the costs in most cases. Received 20 December 2000; accepted 3 May 2001  相似文献   

10.
Predatory arthropods are attracted to infochemicals emitted by their herbivore prey or by the prey’s host plants. We studied such a tritrophic system measuring the olfactory responses of three potter wasp species (Symmorphus murarius, Symmorphus gracilis, Discoelius zonalis, Hymenoptera: Eumeninae) to salicylaldehyde, sequestered as a defence compound by Chrysomela leaf beetle larvae when feeding on Salicaceae, and volatile organic compounds (VOCs) emitted by aspen (Populus tremula, Salicaceae). In electroantennographic recordings (EAG), the highly specialized S. murarius that almost exclusively feeds on larvae of Salicaceae-feeding Chrysomela species was more sensitive to salicylaldehyde than the less specialized S. gracilis, feeding on such Chrysomela species but also weevil larvae. In contrast the related D. zonalis, foraging for microlepidoptera caterpillars on various host plants, did not respond at all. Furthermore, the three wasp species responded differently to aspen VOCs in GC–MS/EAD measurements. These results indicate that the sense of smell of predatory potter wasps differs for prey and plant volatiles among related wasp species according to their degree of host specialization. The considerable differences in salicylaldehyde perception suggest that its originally defensive function has backfired as it is used by specialist potter wasps for prey location. This is an important clue on adaptive mechanisms of the highest trophic level of the well-studied evolutionary arms race among Chrysomela leaf beetles, their host plants and their enemies.  相似文献   

11.
Summary. Mountain birches are deciduous trees consisting of several clonal and partly autonomous ramets. Autumnal moth, Epirrita autumnata, is an extremely harmful pest of mountain birches that during outbreak years may cause the death of trees over large areas. During the larval development of E. autumnata, leaf characters and nutritional suitability vary considerably both temporally and spatially among and within mountain birches. Compared to variation between trees, however, the extent of within-tree variation is known for only a limited number of potentially defensive traits. Plant oxidases, polyphenoloxidases (PPOs) and peroxidases (PODs) may play an important part in dictating the suitability of a tree for plant-eating animals, including E. autumnata. In this study, we observed changes in the activities of oxidative and antioxidative enzymes along leaf development during the larval period of E. autumnata. We also estimated the relative amounts of spatial variation among and within trees. Our results show that POD activities were remarkably high during the rapid elongation growth phase of leaves but decreased with leaf maturation. Thus PODs are suggested to take part in leaf elongation growth. Time and within tree variation accounted for the most of variation in POD activities whereas there was no among tree variation. In contrast, the activities of antioxidative CATs, which act as antagonists to PODs, were low in young leaves and increased towards leaf maturation, reflecting an increase in the oxidative status of source leaves. Within tree variation accounted for the most of the variation in CAT activities. The absolute PPO activities decreased along leaf growth due to the dilution effect whereas the specific activity of PPOs, which has been shown to be defensive against E. autumnata larvae, did not vary temporally that might reflect the importance of these enzymes in the defence of birches. Acidic PPOs showed marked within- and among-tree variation, which may impact herbivores performance on certain genotypes and increase larval mobility within the tree canopy.  相似文献   

12.
Inorganic selenium (Se) is absorbed and enriched by plants and converted into a stable and nutritionally important organic form, which subsequently when consumed by humans or animals results in increased Se tissue levels. Brassica is one of the most potent Se-enriched plants. The aim of this study was to compare differences in Se enrichment between two predominant Brassica plants namely Brassica rapa Linn L. and Brassica tumida Tsenet Lee L. on Se metabolic parameters. Plants exposed to soil Se levels (0, 0.5, 1, 2.5 or 5?mg/kg) were examined on the activity of glutathione peroxidase (GSH-Px), Se levels and expression of Se metabolism related genes using soil pots. Data showed that activities of GSH-Px in leaf and root of the two Brassica species were significantly increased in the presence of Se at 2.5?mg/kg. Se concentrations of leaf, stem and root in B. tumida Tsenet Lee L. and B. rapa Linn L. rose from 0.31 to 21.84-fold (leaf), 1.15 to 15.16-fold (stem) and 2.11 to 15.26-fold (root) in the presence of metal in a concentration-dependent manner. The highest expression levels of adenosine triphosphate (ATP), ATP sulfurylase (APS), selenocysteine methyltransferase (SMT), serine acetyltransferase (SAT), cysteine desulfurase (CysD) and S-adenosyl-l-Met:l-Met S-methyltransferase (MMT) in leaf of B. rapa Linn L. were found at 1?mg/kg Se. The highest expression levels of ATP, APS, SMT, SAT, CysD and MMT in leaf of B. tumida Tsenet Lee L. were observed at 2.5?mg/kg Se. The Se concentrations in leaf, stem and root of B. rapa Linn L. were higher than in B. tumida Tsenet Lee L. under the same soil Se level conditions. At the same Se level, differences in the expression of Se-related genes were observed between these two Brassica species. Our observations may be used to optimize the utilization of Brassica as a nutritional source of Se by growing this plant under certain soil conditions.  相似文献   

13.
In the coastal waters of Florida (USA) tadpole larvae of the colonial ascidian Ecteinascidia turbinata contain chemicals which make them unpalatable to planktivorous juvenile pinfish Lagodon rhomboides. Experiments demonstrate that the bright organe color of E. turbinata tadpoles is aposematic. Fish that have recently tasted larvae of E. turbinata will not attack the palatable tadpoles of Clavelina oblonga when the latter are dyed organe to resemble larvae of E. turbinata. Tadpoles of E. turbinata that have been mouthed and rejected by fish generally survive to complete a normal metamorphosis. Individual selection explains the evolution of aposematic coloration in E. turbinata better than kin selection. The identity of the defensive chemical is unknown. The unpalatable substance in larvae of E. turbinata is removed by dialysis, indicating that it has a molecular weight less than 14000 d. Larvae are not acidic, nor is the active substance denatured by doiling.  相似文献   

14.
Summary. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), sequester glucosinolates of their host plants, namely members of the Brassicaceae family, in their haemolymph. Therefore, they need to circumvent myrosinase activities of the plant tissue which normally hydrolyse the glucosinolates after plant damage. Effects of varying levels of glucosinolates and myrosinases on the performance of A. rosae were investigated using homozygous lines of Brassica juncea (L.) with either (1) low glucosinolate (lowGS) and low myrosinase (lowMR), (2) high glucosinolate (highGS) and high myrosinase (highMR), or (3) high glucosinolate (highGS) and low myrosinase (lowMR) levels. To insure that the given quantities remained as constant as possible, newly hatched larvae were enclosed on the second-youngest leaf of a plant, and were offered a new plant of comparable physiological age (6-leaf-stage) every day. The performance of A. rosae was little affected by leaf quality. Body masses of eonymphs and adults were on average lowest on the highGS/highMR-line, but these differences were rarely significant. The pupal developmental times of females and males were longest on the highGS/lowMR-line in only one of two replicate experiments. All other performance traits (developmental times of larvae, egg numbers, adult longevity) were not significantly different. Glucosinolates, sequestered by the larvae, are carried through the pupal stage. The glucosinolate concentration measured in adult insects reflected the level of the host plant line, without showing any obvious costs for sequestration. Obviously, A. rosae is highly tolerant to variation in the glucosinolate-myrosinase system of its host. In addition, induced changes of glucosinolate concentrations and myrosinase activities caused by 24 h-feeding of groups of three small larvae were analysed in the second-youngest leaves. In contrast to the patterns most herbivores evoke on Brassicaceae, namely an increase of both glucosinolate concentration and myrosinase activity, we detected a significant decrease of both traits in all three lines where the respective trait was originally high in the plants. Although glucosinolate levels dropped in the highGS lines about 50%, these still contained higher concentrations than the lowGS line. Whereas the activity of soluble myrosinases remained highest in the highMR line, even after a decrease to almost 30% due to feeding, the levels of insoluble myrosinases converged after feeding in lowMR and highMR lines. Levels of the signalling molecule salicylic acid slightly decreased on average after feeding, whereas jasmonic acid was below the detection threshold in almost all samples. The concentration of several molecules varies strongly in plant tissue with age and can change due to induction by herbivore feeding. Therefore, if performance of an insect species is measured on plants with specific traits, the variability in these traits needs to be carefully controlled in experiments.  相似文献   

15.
Malcolm  Stephen B. 《Chemoecology》1994,5(3-4):101-117
Summary The contribution of Miriam Rothschild to the monarch cardenolide story is reviewed in the light of the 1914 challenge by the evolutionary biologist, E.B. Poulton for North American chemists to explain the chemical basis of unpalatability in monarch butterflies and their milkweed host plants. This challenge had lain unaccepted for nearly 50 years until Miriam Rothschild took up the gauntlet and showed with the help of many able colleagues that monarchs are aposematically coloured because they sequester toxic cardenolides from milkweed host plants for use as a defence against predators. By virtue of Dr Rothschild's inspiration and industry, and subsequently that of Lincoln Brower and his colleagues, this tritrophic interaction has become a familiar paradigm for the evolution of chemical defences and warning colouration. We now know that the cardenolide contents of different milkweeds vary quantitatively, qualitatively and spatially, both within and among species and we are starting to appreciate the implications of such variation. However, as Dr Rothschild has pointed out in her publications, cardenolides have sometimes blinded us to reality and it is curious how little evidence there is for a defensive function to cardenolides in plants — especially against adapted specialists such as the monarch. Thus the review will conclude with a discussion of the significance of temporal variation and induction of cardenolide production in plants, the lethal plant defence paradox and an emphasis on the dynamics of the cardenolide-mediated interaction between milkweeds and monarch larvae.  相似文献   

16.
Summary. In the past decades, several studies have focused on the identification of feeding stimulants for specialists that feed on solanaceous plants, especially potato (Solanum tuberosum). In the 1950's, a phagostimulant was isolated from potato and tomato for Manduca sexta and characterised as a glycoside. It was suggested that the phagostimulant for M. sexta and Leptinotarsa decemlineata is identical. We tested whether these insects indeed share the same recognition factor. Previous bioassays for L. decemlineata larvae and adults were found to be unsatisfactory, so a new assay system was developed, using starch and wheat flour-based wafers as a neutral substrate. An aqueous extract of potato foliage that was highly active as a stimulant was fractionated by reverse phase medium pressure liquid chromatography (MPLC). Both insects were stimulated by a MPLC fraction that eluted with 25% methanol in water. Further separation of this and the following fraction (35% methanol, stimulatory for the beetle only) by semi-preparative high performance liquid chromatography (HPLC), using gradients of water and acetonitrile, resulted in the isolation of two distinct fractions that stimulated feeding by L. decemlineata. None of the HPLC fractions was active for M. sexta. However, fractions of the flash chromatography with less polarity (45–75% methanol) had a stimulatory effect only on M. sexta. Thus, the two insects do not use a common feeding stimulant, and for both at least two compounds of different polarity are active. Received 3 July 2000; accepted 24 October 2000  相似文献   

17.
Nitrogen (N) based secondary metabolite production is thought to be costly to plants because N is required for growth, as well as, the synthesis of these compounds. Therefore, variation in N availability may result in variation in N-based secondary metabolite production. Here, we determine the effect of N fertilization on caffeine (N-based alkaloid) production in coffee (Coffea arabica) seedlings. A growth chamber experiment was performed with three N treatments applied to seedlings. N fertilization increased plant growth, leaf biomass, and plant N. Caffeine concentration in phloem exudates was greater in high-N fertilized plants relative to intermediate- and low-N plants. However, leaf, stem, root, and total overall caffeine concentration and content did not differ across N treatments. These results suggest caffeine in coffee is strongly regulated by genetic factors, and environment is likely less important to caffeine phenotype. This is among the first studies to investigate the effect of N fertilization on caffeine within the phloem, which has important implications for herbivores that are sensitive to caffeine and plant N and feed from the phloem of coffee.  相似文献   

18.
Summary Our paper addresses field survivorship of first instar monarch butterfly larvae (Danaus plexippus L., Lep.: Danainae) in relation to the dual cardenolide and latex chemical defenses of the sand hill milkweed plant,Asclepias humistrata (Asclepiadaceae) growing naturally in north central Florida. Survival of first instar larvae in the field was 11.5% in the first experiment (15–20 April 1990), and dropped to 3.4% in the second experiment (20–30 April). About 30% of the larvae were found glued to the leaf surface by the milkweed latex. Predator exclusion of non-flying inverte-brates by applying tanglefoot to the plant stems suggested that the balance of the mortality was due to volant inverte-brates, or to falling and/or moving off the plants. Regression analyses to isolate some of the other variables affecting survivorship indicated that first instar mortality was correlated with (1) increasing cardiac glycoside concentration of the leaves, (2) increasing age of the plants, and (3) the temporal increase in concentration of cardiac glycosides in the leaves. The study also provided confirmatory data of previous studies that wild monarch females tend to oviposit onA. humistrata plants containing intermediate concentrations of cardiac glycosides. Cardiac glycoside concentration in the leaves was not correlated with that in the latex. The concentration of cardenolide in the latex is extremely high, constituting an average of 1.2 and 9.5% of the mass of the wet and dry latex, respectively. The data suggest that an increase in water content of the latex is compensated for by an influx of cardenolide with the result that the cardenolide concentration remains constant in the latex systems of plants that are growing naturally. We also observed first instar larvae taking their first bite of milkweed leaves in the field. In addition to confirming other workers findings that monarch larvae possess elaborate sabotaging behaviour of the milkweed's latex system, we discovered that several larvae on their first bite involuntarily imbided a small globule of latex and instantly became cataleptic. This catalepsis, lasting up to 10 min, may have been in response to the high concentration of cardenolide present in the latex ofA. humistrata, more than 10 times that in the leaves. The results of the present study suggest that more attention should be directed to plant chemical defenses upon initial attack by first instar insect larvae, rather than attempting correlations of plant chemistry with older larvae that have already passed the early instar gauntlet. The first bite of neonate insects may be the most critical moment for coping with the chemical defenses of many plants and may play a much more important role in the evolution of insect herbivory than has previously been recognized.  相似文献   

19.
The temporal and multiple-scale spatial variation in the density of mobile epifauna and grazing damage was investigated in populations of the brown seaweed Ascophyllum nodosum (Fucales: Phaeophyta). The relationship between density of grazers and grazing marks was also analyzed. The study was carried out in two locations of the northeastern Atlantic: one at the Isle of Man, in the Irish Sea, and the other at Tjärnö, on the Swedish west coast. Furthermore, the effect of grazing marks on the probability of frond breakage was evaluated in a 1-year experiment carried out on the Isle of Man. High temporal and small-scale spatial variability was recorded in the density of mobile epifauna. A high percentage of species were herbivores, i.e. mesograzers. Adult plants of A. nodosum have several primary vegetative fronds with apical growth. Grazing marks were commonly found along the fronds. Similar levels of grazing damage were detected at the two locations, despite the observed qualitative differences in the grazing assemblages. Small-scale spatial variability in grazing marks was important, with differences in the density of grazing wounds among plants, fronds, and even within fronds. A significant correlation between the proportion of grazed apices and the density of the isopod Idotea spp. and grazing amphipods considered together was detected. This probably reflects the simultaneous feeding activity of these two groups of grazers and suggests the presence of feeding facilitation mechanisms between them. Grazing marks were concentrated in the apical part of the shoots. The results of this study also showed that grazing damage increased the probability of breakage, especially of shorter fronds. This suggests that grazing damage affects the demography of shoots and plants, increasing the transition probabilities to smaller sizes. The presence of interactive effects between grazing and plant density in these A. nodosum populations of northeastern Atlantic shores was also discussed on the basis of the results of this and a previous study.  相似文献   

20.
Summary. Field collected exocrine defensive secretions of nine neotropical Platyphora species were analyzed for the presence of plant acquired pyrrolizidine alkaloids (PAs) and pentacyclic triterpene saponins. All species secrete saponins. In addition, five species feeding on Tournefortia (Boraginaceae), Koanophyllon (Asteraceae, tribe Eupatorieae) and Prestonia (Apocynaceae) were shown to sequester PAs of the lycopsamine type, which are characteristic for species of the three plant families. The PA sequestering species commonly store intermedine, lycopsamine and their O3′-acetyl or propionyl esters as well as O7- and O9-hydroxyisovaleryl esters of retronecine. The latter as well as the O3′-acyl esters were not found in the beetles’ host plants, suggesting the ability of the beetles to esterify plant derived retronecine and intermedine or its stereoisomers. Despite the conformity of the beetles’ PA patterns, considerable inconsistencies exist regarding the PA patterns of the respective host plants. One host plant was devoid of PAs, while another contained only simple necines. Since the previous history of the field collected beetles was unknown this discrepancy remains obscure. In contrast to the Palearctic chrysomeline leaf beetles, e.g. some Oreina species which ingest and store PAs as their non-toxic N-oxides, Platyphora leaf beetles absorb and store PAs as the toxic free base (tertiary PA), but apparently avoid to accumulate PAs in the haemolymph. This suggests that Chrysolina and Platyphora leaf beetles developed different lines of adaptations in their parallel evolution of PA mediated chemical defense. Received 30 November 2000; accepted 5 February 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号