首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 638 毫秒
1.
以城市污水处理厂剩余污泥为实验污泥,研究污泥厌氧过程中磷释放和溶解性微生物代谢产物(SMP)的变化特性,检测了不同厌氧时长下总磷(TP),SMP中蛋白质与多糖含量,利用三维荧光光谱与液相色谱-有机碳测定仪(LC-OCD)进一步探究了SMP的组分分布状况,应用灰色关联度分析了TP与各组分的相关性.结果表明:随着厌氧时间延长,蛋白质,多糖浓度逐渐增加,TP浓度呈现先增大后减小的趋势,TP浓度在厌氧4d最高,达到14.15mg/gVSS,说明污泥厌氧过程中存在最优释磷时间;将三维荧光光谱分为7个荧光区域,平行因子(PARAFAC)分析表明紫外光区类富里酸和类腐殖酸物质荧光强度随着厌氧时间的延长逐渐增大,微生物代谢产物的荧光强度先增大后减小;SMP中生物高聚物和腐殖酸(Humics)等大分子物质浓度逐渐增大,中分子前驱物呈现先增大后减小的趋势,而小分子物质呈现先减小后增大的趋势;蛋白质、多糖和Humics浓度与TP浓度的关联性显著.研究结果可为优化污泥厌氧释磷,提高磷回收效率提供理论支持.  相似文献   

2.
SUFR系统中活性污泥特性及反硝化除磷稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
通过试验考察了螺旋升流式反应器(SUFR)系统中活性污泥的特性及ρ(CODCr)和污泥龄(SRT)对反硝化除磷稳定性的影响. 结果表明:SUFR系统的活性污泥指数(SVI)介于50 ~150 mL/g;污泥活性均在0.75以上;污泥颗粒直径多在0.7~0.9 mm,属于小颗粒污泥;污泥沉降性能良好. 污泥的比硝化速率(SNR)约为1.95 mg/(g·h),前0.5 h的比厌氧释磷速率(SPRR0.5)为26.82 mg/(g·h),比好氧吸磷速率(ASPUR)为6.04 mg/(g·h),比缺氧吸磷速率(NSPUR)为4.27 mg/(g·h),污泥产率系数约为0.60,对氮磷均有较好的去除能力. SUFR系统反硝化吸磷作用对ρ(CODCr)和SRT都有一定的抗冲击能力,系统除磷效果对进水ρ(CODCr)的耐冲击负荷能力较高,但长期在较低SRT下运行会使系统内活性污泥量急剧降低,导致处理效果下降.   相似文献   

3.
以CaO、MgO和白云石石灰(D-Lime)为晶种对模拟厌氧消化上清液进行磷回收试验,研究晶种投加量对磷去除效率的影响,分析试验反应动力学和产物表面形态。结果表明:磷浓度为0.645 mmol/L(ρ(P)=20 mg/L)、n(N)/n(P)为8:1、pH为7.80的模拟水中,投加一定量的CaO、MgO和D-Lime进行磷回收试验,磷的去除率在95%以上,试验反应过程符合准一级反应动力学。针对消化上清液中的高浓度常见离子CO32-,当c(CO32-)≥ 10 mmol/L时,其对CaO除磷具有明显抑制作用,而对D-Lime和MgO抑制作用有限。此外,投加晶种中含有Mg2+时会生成磷酸铵镁晶体(magnesium ammonium phosphate,MAP)。  相似文献   

4.
选择有代表性的3种来源废水(养猪场废水厌氧消化液、鸡粪废水厌氧消化液和污泥厌氧消化液),利用MgO与白云石石灰作为药剂进行磷回收试验,研究不同药剂、药剂投加量和反应时间下3种来源废水中磷的回收效果,通过动力学方程模拟2种药剂的除磷速率,并采用XRD(X射线衍射)、SEM(扫描电镜)对沉淀产物进行表征. 结果表明:投加2种药剂均可实现磷的有效去除与回收,反应沉淀物中含有MAP(磷酸铵镁)和CaCO3,MgO的最佳投加量为200 mg/L,当反应时间为4 h时,PO43--P去除率达85.0%以上;白云石石灰的最佳投加量为500 mg/L,当反应时间为24 h时,PO43--P去除率达80.0%以上. 投加白云石石灰的反应速率较慢,并且反应沉淀物中含有更多的CaCO3. 以处理1 m3原水为例,MgO药剂成本为0.80元,白云石石灰药剂成本为0.25元,显示白云石石灰经济成本更低,是较为理想的磷回收药剂.   相似文献   

5.
采用厌氧/缺氧/好氧和生物接触氧化反应器(A2/O-BCO)组成的反硝化除磷系统处理模拟生活污水,通过调节进水乙酸钠、丙酸钠的配比(乙酸钠:丙酸钠分别为1:0,2:1,1:1,1:2和0:1),考察了系统对有机物的去除以及同步脱氮除磷的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明:乙酸钠丙酸钠配比对有机物和NH4+-N的去除影响较小,对厌氧段有机物的消耗和TN的去除率以及磷的释放和吸收影响较为明显;TP去除率仅为50.3%~56.8%,需进一步优化系统的运行参数.当乙酸钠:丙酸钠=1:1时,厌氧段有机物消耗量最大,占有机物流入量的61.2%,厌氧释磷量最大(23.2mg/L)且缺氧吸磷率最高(71.4%),而TN的去除效果则随丙酸钠含量的增加而增加.高通量测序结果表明:A2/O反应器中微生物多样性降低,混合碳源污泥中微生物多样性比单一碳源更丰富;驯化后的污泥中绿弯菌(Chloroflexi)和螺旋菌(Saccharibacteria)减少,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)增加.BCO反应器中Nitrospira和Nitrosomonas总占比为2.1%~31.4%,且抑制亚硝酸盐氧化菌(NOB)的活性,有利于短程硝化的实现.  相似文献   

6.
以污泥和秸秆为共基质,以沼气产量、ρ(VFA)(VFA为挥发性脂肪酸)和CODCr去除率等为指标,探究污泥与秸秆配比(以CODCr计,质量比分别为1:0、1:1、2:1、3:1)对中温两相厌氧消化工艺运行效能的影响,以及最佳配比时SRT(污泥停留时间)对产甲烷相厌氧消化稳态特性的影响.结果表明:与污泥试验组相比,添加秸秆试验组的厌氧消化效能均较好;污泥与秸秆的最佳配比为2:1,该稳定状态下产酸相CODCr的去除率最高,为17.5%,ρ(VFA)为752 mg/L;产甲烷相CODCr的去除率为33.5%,ρ(VFA)为250 mg/L,产气量为47.7 mL/d,总体运行效能较高.在最佳污泥与秸秆配比(2:1)并设定产甲烷相反应器的SRT为20 d时,稳定状态下产甲烷相各组分的变化情况:CODCr去除率为41.20%,ρ(VFA)为238 mg/L,产气量为51.3 mL/d,沼气产率为8.4 mL/(d·g).研究显示,当控制污泥与秸秆配比为2:1、SRT为20 d时,中温两相厌氧消化工艺运行效果良好.   相似文献   

7.
为了有效提高污泥水解效率、缩短厌氧消化时间,以K2FeO4为氧化剂破解剩余污泥,考察K2FeO4投加量(50~500 g/kg,以干质量计)对污泥破解率的影响,分析水解液各项特征指标并对其可生化性能进行预测,探究该方法作为污泥厌氧预处理的可行性.结果表明:污泥水解效率随着K2FeO4投加量的增加而升高,当搅拌速率为500 r/min、反应时间为2 h、K2FeO4投加量为500 g/kg的条件下,可实现最高的污泥破解率(34.6%).污泥水解液中有机物以多糖、蛋白质为主,并有少量挥发性有机酸;污泥破解过程也伴随着P和NH4+-N的释放,上清液中ρ(TP)最高可达496 mg/L,且以正磷酸盐为主(约310 mg/L),可对其进行回收.采用三维荧光体积积分的方法对污泥水解液的可生化性能进行预测,发现污泥经K2FeO4预处理后,水解液中RB(易降解有机质)和PB(难降解有机质)荧光强度均明显增加,当K2FeO4投加量为50 g/kg时,Fdigestion(生物可降解性指数)达到最大值(4.75),预测此时污泥的可生化性能最佳.以K2FeO4为氧化剂预处理污泥可有效提升污泥水解效率,但若作为厌氧消化预处理,应综合考虑污泥破解率和可生化性能.研究显示,搅拌速率为500 r/min、反应时间为2 h、K2FeO4投加量为50 g/kg预处理条件下污泥的可生化性能最佳.   相似文献   

8.
生物污泥对染料的吸附及胞外聚合物的作用   总被引:2,自引:1,他引:1  
孔旺盛  刘燕 《环境科学》2007,28(12):2716-2721
对比研究了4种生物污泥(包括活性污泥、厌氧污泥、干活性污泥、干厌氧污泥)对染料酸性湖蓝A的吸附,并考察了胞外聚合物(EPS)以及外层溶解性胞外聚合物(SEPS)和内层固着性胞外聚合物(BEPS)在此过程中所起的作用.结果表明,4种污泥吸附量与染料平衡浓度之间均既符合Freundlich模型(R2为0.921~0.995),又符合Langmuir模型(R2为0.958~0.993),但不符合BET模型(R2为0.07~0.863).干厌氧污泥对染料酸性湖蓝A的吸附性能最好,干活性污泥的吸附性能最差.从Langmuir等温方程来看,干厌氧污泥的最大吸附量最高,为104 mg/g,其次为厌氧污泥的吸附(86 mg/g)、活性污泥(65 mg/g),干活性污泥的最大吸附量最低,仅为20 mg/g.EPS的吸附量占整个活性污泥和厌氧污泥的吸附量的比例均大于50%,活性污泥和厌氧污泥对染料酸性湖蓝A的吸附主要是EPS的吸附所贡献. 厌氧污泥吸附染料酸性湖蓝A时, BEPS起主要作用; 而活性污泥吸附时,SEPS起主要作用.对2种污泥而言,SEPS的单位质量吸附量均远大于BEPS的单位质量吸附量, 活性污泥平均为52倍, 厌氧污泥为10倍. 厌氧污泥BEPS的吸附用Langmuir模型拟合,效果最好(R2为0.998 6).  相似文献   

9.
以实验室培养的4种除磷颗粒污泥为研究对象,利用X衍射法和SMT法对除磷颗粒污泥中磷(P)的形态和含量进行了分析测定,同时利用加热法和超声法将除磷颗粒污泥中胞内物质和胞外物质分离,提取胞外聚合物(EPS),分析其中总磷(TP)的含量,并进一步研究除磷颗粒污泥的除磷机理。结果表明:除磷颗粒污泥中的磷与Ca、Fe、Al、Na、K、Mg等结合形成磷酸盐化合物,其中无机磷(IP)含量达97%以上,且IP中钙结合磷(Ca-P)含量在53.50%-82.73%之间;EPS的TP含量在34.87%-56.91%之间,说明除磷颗粒污泥中EPS对磷的去除具有积极作用。  相似文献   

10.
为了探索超声和低温热水解预处理技术对剩余污泥厌氧消化性能的影响,进行了单独超声、单独热水解和二者联合的实验研究.以温度和超声能量为控制参数,研究了不同预处理技术对污泥破解度DD(Disintegration degree of SCOD)和有机质溶出的影响.结果表明:联合预处理技术对DD和有机质浓度的增加效果比超声和热水解单独作用之和分别高4.04%、36.62mg/L. DD和实际输入能量之间存在较高的线性相关性(R2=0.977),即在本研究条件下,输入能量越高,污泥破解效果越好.超声和热水解联合预处理后污泥厌氧消化产甲烷量较原泥增加了30.2%~55.4%.DD和厌氧消化性能之间存在二次非线性关系(R2=0.821),且厌氧消化性能最高达到877.76LCH4/kg VSS去除,该峰值出现在超声能量12000kJ/kg TS和热水解温度80℃联合作用条件下.  相似文献   

11.
通过正交实验、单因素温度影响实验,利用SMT磷分级提取法研究了高温热水解后高含固污泥中磷的形态转化.结果表明,120℃~160℃的高温热水解可以将高含固污泥中14.80%以上的有机磷转化为无机磷,影响因素对无机磷/总磷的影响大小顺序为:热水解温度 > 热水解时间 > 氧化剂含量 > pH值,随着温度的升高,高含固污泥中无机磷/总磷也从79.13%增加至95.87%;当热水解温度为160℃、时间为40min时,高含固污泥中无机磷含量由原泥的18.30mg/g增至20.49mg/g,无机磷/总磷由80.83%增至96.97%.结果为实现污泥中磷的回收利用奠定基础,同时为“高温热水解+高含固厌氧消化”工艺的优化提供新思路.  相似文献   

12.
两级生物选择同步除磷脱氮新工艺   总被引:2,自引:0,他引:2       下载免费PDF全文
针对现有市政污水处理工艺难以兼顾同时生物脱氮除磷的矛盾,结合生活污水低碳氮比的特点,通过在传统的A/O工艺的基础上增设了1个厌氧选择器以提供生物释磷最适宜环境,1个缺氧选择器以避免回流污泥中硝酸盐对厌氧释磷影响以及防止污泥膨胀,开发了一种新型的2级生物选择同步除磷脱氮新工艺.研究表明,应用2级生物选择反硝化除磷脱氮工艺处理生活污水,当进水COD/TN=4.4, COD/TP=33的情况下,稳定期的COD、氨氮、总磷的去除效率分别可达到88%、90%和97%,出水水质达到了国家《城镇污水处理厂污染物排放标准》的一级A标准,反硝化除磷量占总除磷量的35%,并且缺氧段硝酸盐量和缺氧吸磷量成明显的线性关系,平均每消耗1mgNO3--N约吸收1.8mgTP,此线性关系可作为本工艺反硝化除磷的一个重要控制参数.  相似文献   

13.
In order to achieve simultaneous nitrogen and phosphorus removal in the biological treatment process, denitrifying phosphorus accumulation (DNPA) and its affecting factors were studied in a sequencing batch reactor (SBR) with synthetic wastewater. The results showed that when acetate was used as the sole carbon resource in the influent, the sludge acclimatized under anaerobic/aerobic operation had good phosphorus removal ability. Denitrifying phosphorus accumulation was observed soon when fed with nitrate instead of aeration following the anaerobic stage, which is a vital premise to DNPA. If DNPA sludge is fed with nitrate prior to the anaerobic stage, the DNPA would weaken or even disappear. At the high concentration of nitrate fed in the anoxic stage, the longer anoxic time needed, the better the DNPA was. Induced DNPA did not disappear even though an aerobic stage followed the anoxic stage, but the shorter the aerobic stage lasted, the higher the proportions of phosphorus removal via DNPA to total removal. Translated from Environmental Science, 2004, 25(6): 92–96 [译自: 环境科学]  相似文献   

14.
同时硝化/反硝化除磷工艺的脱氮除磷效能   总被引:1,自引:0,他引:1  
为实现同时硝化/反硝化除磷(SNDPR),在序批式活性污泥反应器(SBR)中,采用厌氧/好氧和厌氧/缺氧/好氧2种运行模式驯化污泥,并考察了厌氧/低氧模式下SNDPR过程中COD、PHB、TP、TN、DO和电化学参数的变化规律。结果表明,经2阶段驯化,反硝化聚磷菌比例提升至85.9%,硝化速率达5.97 mg(/L.h),实现了反硝化除磷菌和硝化菌的良好共存;在厌氧/低氧模式下,SNDPR对低碳城市污水具有良好脱氮除磷效果,TP、TN和COD去除率达到93.7%、79%和87.7%;PHB与COD降解、TN降解和TP吸收有良好的相关性,也是SNDPR过程的碳源驱动力;pH和ORP曲线上"谷点"预示厌氧释磷结束,pH曲线"折点"指示SNDPR结束。  相似文献   

15.
饮用水中的磷及其在常规处理工艺中的去除   总被引:10,自引:0,他引:10  
对某市某水厂水源水和出厂水中磷的存在形式、常规处理工艺对总磷 (TP)和微生物可利用磷 (MAP)的去除进行了研究 .结果表明 :①水源水中的磷主要以非溶解性形式存在 ,溶解性总磷酸盐约占总磷 30 % ;溶解性正磷酸盐只在个别月份检出 ,且浓度很低 ;②水源水中微生物可利用磷浓度一般高于溶解性总磷酸盐浓度 ,说明微生物也可以利用非溶解性磷 ;③出厂水中溶解性总磷酸盐占总磷的比例较水源水中溶解性总磷酸盐占总磷的比例升高 ,说明其去除较非溶解性的磷困难 ;④常规处理工艺对总磷和微生物可利用磷去除效果较好 ,平均去除率分别为 6 6 %和 6 9% ,混凝沉淀单元和过滤单元对总磷去除效果均较好 .强化混凝工艺 ,降低出厂水中的MAP ,有可能保证饮用水生物稳定性  相似文献   

16.
以污水处理厂化学除磷工艺产生的常见化学磷(AlPO4和FePO4)沉淀为研究对象,考察了两种化学磷分别与剩余活性污泥(即生物污泥)混合厌氧发酵过程中化学磷和生物磷的释放情况.结果表明:在纯水中,AlPO4在强酸强碱条件下均能释出部分磷,FePO4只在强碱条件下才能溶解释磷.在(35±1)℃,不同pH值下将含AlPO4的混合污泥厌氧发酵时,强酸性厌氧发酵能释出较多的化学磷,但微生物活性被抑制,不利于发酵产酸;碱性发酵(pH=10~11)能释出28%~55%的化学磷,43%~49%的生物磷,总释磷量比中性条件下高17.5%~62.7%,同时利于发酵产酸,维持pH 10和11时产酸量分别比中性条件高233%和117%;对于含FePO4的混合污泥厌氧发酵,中性条件下即能释放FePO4中40%的磷和生物污泥中50%的磷,释磷量高于pH=11的碱性厌氧发酵释磷量.  相似文献   

17.
胞外聚合物EPS在废水生物除磷中的作用   总被引:20,自引:6,他引:14  
对EPS在废水生物除磷中的作用机理进行系统研究,探讨和完善生物除磷机理.试验结果表明,在生物除磷系统中,EPS贮存了部分磷,在生物除磷中起着重要的作用.在厌氧.好氧交替过程中.EPS中磷含量呈厌氧减少、好氧增加的周期性变化;污泥中的磷有82%左右被聚磷菌吸收,另外18%左右的磷聚集在EPS中;一个运行周期中基质所减少的磷84.3%被聚磷菌过量吸收,15.7%被贮存于EPS中;EPS对磷的去除能力与EPS的含量正相关.此外,泥龄对EPS影响较大,对EPS在生物除磷中的作用影响显著,泥龄越长,EPS含量越高,EPS中所贮存的磷含量越高.而磷负荷对EPS除磷影响不显著.  相似文献   

18.
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.  相似文献   

19.
富磷剩余污泥厌氧消化过程中的水解与生物释磷机制   总被引:1,自引:0,他引:1  
毕东苏  郭小品  陆烽 《环境科学学报》2010,30(12):2445-2449
以某采用A/O生物除磷工艺的污水处理厂排出的富磷剩余污泥为研究对象,设计厌氧消化比较试验,讨论了富磷剩余污泥厌氧消化过程中的磷释放机制.结果发现,剩余污泥消化系统中的SOP(溶解性正磷)释放/PHA(聚羟基烷酸)合成比值大于活性污泥厌氧释磷系统,证实了剩余污泥厌氧消化过程中水解机制是磷释放的主导机制;剩余污泥消化系统中的PHA合成/糖原降解比值小于活性污泥厌氧释磷系统,表明污泥消化系统中的糖原降解不仅仅是生物释磷引起的;厌氧消化系统中抑菌剂的存在对于污泥消化系统的水解释磷机制与生物释磷机制均是不利的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号