首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory-scale anaerobic-anoxic-aerobic process (A2O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A2O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A2O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A2O process, the suspended activated sludge in this A2O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and NH4+-N were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g−1 additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A2O process was also investigated, and the results demonstrated that the optimum value was 1:6:2.  相似文献   

2.
为了探究侧流化学磷回收后生物污泥返送对主流系统的影响,连续85d对A2/O系统厌氧池混合液中的磷进行侧流化学回收,并将侧流生物污泥回流到缺氧池,考察了系统整体的磷、氮、有机物的去除,及生物除磷途径与污泥性能的变化.结果表明,刚开始系统除磷效果有所提高,出水PO43-浓度为(0.07±0.04) mg/L;20d后污泥沉降性能开始变差,除磷性能恶化,但对氮和有机物去除一直无显著影响;厌氧释磷速率和好氧吸磷速率下降,但缺氧吸磷速率却增加,缺氧反硝化聚磷和好氧聚磷的除磷比例由43.20%上升为53.38%,反硝化聚磷除磷得到了加强;污泥微生物胞内PHA和糖原的代谢模式无变化,但厌氧段合成的PHA量逐步下降;侧流磷最大回收量占进水磷量的24.75%,能够实现可观的磷回收效果;系统发生崩溃后,停止侧流化学磷回收,系统各功能就会逐渐得到恢复,可实现系统连续运行.  相似文献   

3.
选用4组同规格SBR反应器,在A/O/A模式下以水解酸化液为进水,调整厌/缺氧时间分别为50min/170min、90min/130min、130min/90min、180min/40min,探讨颗粒污泥在不同厌/缺氧时间下脱氮除磷特性.结果表明,厌氧时间从50min延长至90min时,污泥内碳源储存量和释磷量增加,同步硝化反硝化(SND)效率提高至62.65%,TN、TP去除率分别从81.1%、 82.2%上升92.9%、98.5%.当厌氧时间从90min升至180min时,释磷量反而下降,厌氧内源性条件刺激胞外聚合物(EPS)增加造成聚羟基烷酸(PHA)合成下降,TP去除率降至88.1%;同时缺氧时间从130min降至40min,系统残留的NOX-较多,造成TN去除率降低至84%.机理分析表明系统中TN在好氧段由反硝化聚磷菌(DPAOs)和反硝化聚糖菌(DGAOs)利用PHA以SND方式消耗,并在缺氧段由DGAOs内源反硝化进一步去除,TP由PAOs和DPAOs去除,由批次实验估算得DPAOs占比在R2中最高,达41%,4组反应器运行期间颗粒均未发生解体,以水解酸化液为基质培养的颗粒结构完整、稳定性强.结果表明,厌/缺氧时间的适当延长有利于加强内碳源的贮存与转化,强化厌氧释磷、SND和后置内源反硝化效果,实现同步硝化内源反硝化和除磷高效稳定运行.  相似文献   

4.
A~2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷   总被引:8,自引:0,他引:8  
以低C/N比实际生活污水为研究对象,重点考查了A2/O-曝气生物滤池生化系统的脱氮除磷特性.同时,考虑到A2/O工艺的主要功能是除磷及反硝化,而曝气生物滤池则以硝化为目的.因此,通过缩短A2/O的泥龄,可将硝化过程从A2/O中分离出去,让曝气生物滤池完成硝化,实现硝化菌和聚磷菌的分离,并解决了硝化菌和聚磷菌泥龄之间的矛盾.试验结果表明,该生化系统可实现有机物、氮和磷的同步去除.在平均C/N比为4.2,内回流比R为250%的条件下,平均进水COD、TN、TP分别为239.9、57.3和5.1mg·L-1,平均最终出水COD、TN、TP分别为34.1、13.3和0.1mg·L-1,去除率分别为85.8%、76.9%和98.3%.曝气生物滤池对氨氮几乎保持了100%的去除率.序批试验表明,反硝化聚磷菌占聚磷菌的比例为40.5%.  相似文献   

5.
进水C/N对A~2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧与生物接触氧化工艺组成的双污泥系统(A~2/O-BCO)处理实际生活污水.通过投加乙酸钠调节进水碳氮比(C/N=2.44~8.85),考察了系统的反硝化除磷特性.试验结果表明:进水有机物主要是通过改变硝化性能(即缺氧段反硝化负荷)以及聚-β-羟基链烷酸脂(PHA)的贮存和利用,进而影响系统的脱氮除磷效果.当进水C/N为4~5时,COD、TN和PO_4~(3-)-P去除率分别达到88%,80%和96%,实现了有机物、氮和磷的同步高效去除.碳平衡分析表明,A~2/O反应器去除的COD占去除总量的71.86%~77.28%,BCO反应器去除的COD仅占2%~12%,碳源的高效利用是A~2/O-BCO工艺在低C/N条件下实现深度脱氮除磷的重要原因.此外,通过进水C/N与曝气量、硝化液回流比、厌/缺氧反应时间等相关性的分析,提出了系统的优化运行策略.  相似文献   

6.
SBR后置缺氧反硝化除磷的启动及去除性能   总被引:1,自引:0,他引:1  
为实现对氮磷的高效同步去除,采用将缺氧后置的SBR工艺,以生活污水为处理对象,考察反硝化除磷工艺的启动与运行效果.结果表明,先通过短污泥龄(SRT)驯化富集聚磷菌(PAOs),再延长污泥龄并引入缺氧段,39d即可实现反硝化除磷工艺的启动,COD、TP、NH4+-N、TN去除率分别为92.9%、98.4%、100%和87.6%.进水COD与TN比(C/N)对系统氮磷去除有一定影响:C/N短暂的降低幅度不超过17.65%时,氮磷去除效率并没有明显变化;当超过33.3%时,脱氮除磷性能下降,但伴随着运行时间的延长,出水COD浓度减少,反硝化除磷菌(DPAOs)在PAOs比例也会提升,这在一定程度上弥补了DPAOs反硝化脱氮效率的下降.周期实验表明,pH值与DO可以作为厌氧释磷结束与周期结束的实时控制参数,大大缩短反应时间,降低曝气能耗.  相似文献   

7.
王文琪  李冬  高鑫  张杰 《环境科学》2021,42(9):4406-4413
采用生活污水接种人工配水下成熟短程硝化反硝化除磷颗粒,通过不同好氧/缺氧时长联合分区排泥优化调控短程硝化反硝化除磷系统运行.结果表明,调控好氧/缺氧时长联合分区排泥可实现系统的稳定运行.后期稳定期出水COD浓度在50mg·L-1以下,出水TN浓度低于15mg·L-1,TN去除率达83%左右并保持平稳,出水P浓度均在0.5mg·L-1以下,平均去除率为93.72%.同时,分区排泥(70%顶部污泥和30%底部污泥)可作为筛选微生物的途径,维持了良好的亚硝化和除磷性能,使粒径分布更为集中,并保证氨氧化菌(ammonia oxidizing bacteria,AOB)和反硝化聚磷菌(denitrifying phosphate accumulating organisms,DPAOs)的生长优势.缺氧时长的增加提高了缺氧异养菌的生长速率,使得缺氧异养菌分泌出更多的EPS,确保了颗粒污泥性状的改善和后续维持稳定.  相似文献   

8.
以实际低C/N生活污水为研究对象,依次分别采用A2O工艺和A2O+BCO(生物接触氧化)工艺考察系统的脱氮除磷性能.试验在进水负荷和运行参数基本维持不变的情况下运行134d.结果表明,相对于A2O系统,A2O+BCO系统由于采用双污泥工艺,硝化菌和聚磷菌(PAOs)污泥龄分离,同时反硝化除磷"一碳两用",碳源利用率更高,TN和TP去除率分别提高了18%和28%.其次FISH试验表明,在稳定运行的A2O+BCO工艺中,PAOs比例为22%,远远超过A2O中7%的比例,从微生物角度证明了脱氮除磷效果好的原因.  相似文献   

9.
污泥龄对A/A/O工艺反硝化除磷的影响   总被引:12,自引:0,他引:12  
徐伟锋  陈银广  张芳  顾国维 《环境科学》2007,28(8):1693-1696
以实际生活污水培养驯化污泥的小试规模A/A/O工艺为研究对象,进行了污泥龄(SRT)为8、10、12和15 d时对反硝化除磷的影响研究.结果表明,随着污泥龄的延长,反硝化除磷对系统除磷所起的作用越大,反硝化聚磷菌缺氧利用单位PHAs的反硝化数量和吸磷量也迅速增加,聚磷菌好氧利用单位PHAs的吸磷量并没有受到影响,以SRT为12 d时反硝化除磷和系统脱氮除磷效果为最好.结果还表明,去除单位氮所需COD数量随污泥龄的延长呈减少趋势,而去除单位磷所需COD数量呈增大趋势.对于我国典型的城市污水而言,SRT为12 d和15 d时去除单位氮和磷所需的外碳源数量较8 d时要低,从而使反硝化除磷作用可真正地达到节省碳源和能源的目的.  相似文献   

10.
内循环对A2/O-曝气生物滤池工艺脱氮除磷特性影响   总被引:8,自引:6,他引:2  
在原水温度为15℃和C/N为4.9的条件下,以实际生活污水为研究对象,重点考察了内回流比为100%、200%、300%和400%时小试规模A2/O-曝气生物滤池工艺脱氮除磷特性.结果表明,该生化系统可实现有机物、氮和磷的同步深度去除.在总HRT为8.0 h、SRT为15 d、污泥回流比为100%和MLSS为4.0 g·...  相似文献   

11.
设置3组规格相同的SBR反应器R1、R2和R3,分别采用A/O/A-A/O/A、A/O/A-A/O、A/(O/A)n-A/O方式运行,以模拟废水为进水基质,接种实验室4℃长期饥饿储存的好氧颗粒污泥及絮状污泥(70%颗粒污泥+30%絮状污泥),在相同初始条件下,探讨了不同运行方式下颗粒污泥的活性恢复情况及短程硝化反硝化除磷性能.实验结果表明,联合厌氧/微好氧的A/(O/A)n交替运行模式在实现颗粒污泥的活性恢复及污染物处理性能上表现出较大的优势,R3形成了平均粒径为802.98μm的密实颗粒,分泌的胞外聚合物(EPS)含量达到了94.52mg/gVSS,表明联合厌氧/微好氧的交替运行模式刺激了微生物分泌更多的EPS,颗粒结构更稳定.在稳定运行期间,R3的COD、TP、TN去除率分别达到了92.45%、93.72%和97.24%.系统内以亚硝酸盐为电子受体的反硝化聚磷菌所占比例达到了51.46%,实现了氨氧化菌(AOB)与反硝化聚磷菌(DPAOs)的同步富集,具有良好的污染物去除效果.  相似文献   

12.
采用厌氧/缺氧/好氧-生物接触氧化(A2/O - BCO)工艺处理低碳氮(C/N)比污水, 考察单因素碳源(阶段Ⅰ: 乙酸钠; 阶段Ⅱ: 乙酸钠+丙酸钠; 阶段Ⅲ: 丙酸钠)对有机物去除以及同步脱氮除磷的影响, 并重点探究乙酸钠、丙酸钠混合碳源条件下内碳源(PHA、Gly)的转化利用以及反硝化除磷(DPR)机理, 同时通过高通量测序对比了不同阶段微生物菌群结构的演变规律.结果表明: 混合碳源提高了有机物、氮、磷的同步去除效率, 厌氧段内碳源转化量为226mg/h, 释磷量高达30.58mg/L, DPR效率稳定在90%以上; 批次试验表明反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的比例为72.42%, 基本实现了DPAOs的富集; 高通量测序结果表明混合碳源更有利于形成独特的OTUs菌群, PAOs(包括AccumulibacterAcinetobacter)和DPAOs (包括DechloromonasPseudomonas)总量高达29.13%(> 16.18%(阶段Ⅲ) > 14.34%(阶段Ⅰ)), 有效促进了碳源的高效利用以及反硝化除磷效率; BCO反应器中氨氧化菌(AOB, 包括NitrosomonasNitrosomonadaceae)和亚硝酸盐氧化菌(NOB, 以Nitrospira为主)总量从3.89%(N1)增加到23.09%(N2)、37.23%(N3), 为反硝化除磷提供充足的电子受体; 此外, 建立了基于碳源高效利用的运行调控策略, 以期为A2/O - BCO工艺的推广应用提供理论参考.  相似文献   

13.
采用厌氧/缺氧/好氧和生物接触氧化反应器(A2/O-BCO)组成的反硝化除磷系统处理模拟生活污水,通过调节进水乙酸钠、丙酸钠的配比(乙酸钠:丙酸钠分别为1:0,2:1,1:1,1:2和0:1),考察了系统对有机物的去除以及同步脱氮除磷的影响,同时通过高通量测序对比了不同配比下微生物菌群结构的变化.结果表明:乙酸钠丙酸钠配比对有机物和NH4+-N的去除影响较小,对厌氧段有机物的消耗和TN的去除率以及磷的释放和吸收影响较为明显;TP去除率仅为50.3%~56.8%,需进一步优化系统的运行参数.当乙酸钠:丙酸钠=1:1时,厌氧段有机物消耗量最大,占有机物流入量的61.2%,厌氧释磷量最大(23.2mg/L)且缺氧吸磷率最高(71.4%),而TN的去除效果则随丙酸钠含量的增加而增加.高通量测序结果表明:A2/O反应器中微生物多样性降低,混合碳源污泥中微生物多样性比单一碳源更丰富;驯化后的污泥中绿弯菌(Chloroflexi)和螺旋菌(Saccharibacteria)减少,变形菌(Proteobacteria)和拟杆菌(Bacteroidetes)增加.BCO反应器中Nitrospira和Nitrosomonas总占比为2.1%~31.4%,且抑制亚硝酸盐氧化菌(NOB)的活性,有利于短程硝化的实现.  相似文献   

14.
In the biofilm and activated sludge combined system,denitrifying bacteria attached on the fibrous carriers in the anoxic tank,while the sludge containing nitrifying and phosphorus removal bacteria was only recirculated between the aerobic and anaerobic tanks.Therefore,the factors affected and restricted nitrification,denitrification and phosphorus removal in a traditional A/A/O process were resolved.This paper describes the optimum operation conditions for nitrogen and phosphorus removal using this system.  相似文献   

15.
A2/O污水处理工艺中基质转化机理研究   总被引:3,自引:2,他引:1  
徐伟锋  陈银广  顾国维  张芳 《环境科学》2006,27(11):2228-2232
以实际污水培养驯化污泥的小试规模A2/O工艺为研究对象,对系统中基质的转化机理及硝态氮对基质转化的影响进行了批式试验研究.结果表明,在无硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD有51%可被聚磷菌吸收并合成为聚羟基链烷酸(PHAs);缺氧和好氧条件下的比吸磷速率为3.87和6.54 mg/(g·h),利用单位PHAs的吸磷量(rP/PHA)分别为0.38和0.78.而在有硝态氮存在于厌氧环境的系统中,厌氧段消耗的COD仅有30.8%可被聚磷菌吸收并合成PHAs,61.5%用于还原硝态氮;缺氧和好氧条件下的比吸磷速率为2.24和4.58 mg/(g·h),rP/PHA值分别为0.35和0.77.同时,在这2个系统中厌氧阶段释放的磷和消耗的COD成良好的线性关系.硝态氮存在于厌氧环境会降低聚磷菌的厌氧释磷速率和效率,使PHAs的合成量减少,从而降低聚磷菌的缺氧和好氧吸磷速率,但并不会影响其吸磷能力.  相似文献   

16.
除磷颗粒诱导的同步短程硝化反硝化除磷颗粒污泥工艺   总被引:6,自引:6,他引:0  
李冬  刘博  王文琪  张杰 《环境科学》2020,41(2):867-875
以低C/N比生活污水为研究对象,接种成熟除磷颗粒污泥,通过联合调控好氧时间及曝气强度成功将其诱导成具有同步短程硝化反硝化除磷功能的颗粒污泥,并分析了此过程中系统脱氮除磷特性变化.结果表明,好氧段曝气强度为5L·(h·L)~(-1),在较短曝气时间下(140 min)可实现AOB的富集,但同步硝化反硝化能力难以提高;降低曝气强度为3. 5L·(h·L)~(-1),延长曝气时间(200 min),好氧段氮损增加.根据pH及DO曲线进一步优化曝气时长抑制NO_2~-向NO_3~-转化,优化后系统出水TP 0. 5 mg·L~(-1)和TN 15 mg·L~(-1),可实现氮磷的同步去除.在系统功能由单纯的除磷向同步脱氮除磷转化的过程中,释磷量下降,PAOs在内碳源储存过程中的贡献比例有所下降,但仍占主体地位(60%).批次实验表明,颗粒中可利用NO_2~-为电子受体的DPAOs占绝大部分达52. 43%,其富集减轻了系统的碳源压力,从而改善脱氮除磷效果.  相似文献   

17.
NO-2作为电子受体对反硝化吸磷影响动力学研究   总被引:4,自引:0,他引:4  
在生物除磷系统中NO-2常被认为是反硝化吸收磷过程的抑制剂,而NO-2对反硝化吸磷抑制过程的抑制剂量的结果差别很大,缺乏动力学研究.本研究应用序批式反应器(SBR)在不同的NO-2浓度和pH梯度下进行了反硝化吸收磷试验,其接种活性污泥取自A2/O氧化沟中试反应器.SBR试验步骤为,取氧化沟好氧区活性污泥,先投加乙酸钠释放磷,然后投加NO-2吸收磷.大量试验发现NO-2和pH共同作用对反硝化吸磷产生了抑制.结果表明,[1]在恒定pH下,比反硝化速率和比吸磷速率与初始NO-2浓度均符合Andrews抑制动力学;[2]在6.5相似文献   

18.
缺氧/厌氧/好氧工艺的脱氮除磷研究   总被引:11,自引:0,他引:11  
通过实验研究缺氧环境倒置,来比较对A/A/O工艺脱氮除功能的影响。结果表明,与常规A/A/O(厌/缺/好)工艺相比,倒置后的工艺具有更好的脱氮除磷效果,在同等条件下,倒置系统的出水中PO4^3-P明显降低,而比反硝化速率却可30-50%,该文还进一步揭示了聚磷微生物在各种环境下的释磷和吸磷规律及其相互关系。  相似文献   

19.
采用改良A2/O-BAF双污泥系统处理低C/N比生活污水,为提高碳源利用率,研究了两段进水(预缺氧段和缺氧段)对反硝化除磷脱氮的影响,同时根据COD的物料衡算公式,分析评价了不同进水比下,碳源的利用情况.结果表明当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP浓度分别为174.99、58.19、59.10、5.15 mg·L-1,出水COD、NH4+-N、TN、TP浓度分别为29.48、4.07、14.10、0.44 mg·L-1,去除率分别为82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%,此时系统反硝化除磷脱氮最佳,同时碳源的有效利用率达85.77%,平衡百分比为92.33%.通过优化分段进水,碳源被有效利用,提高了同步脱氮除磷效率,为改良A2/O-BAF双污泥系统处理低C/N比污水提供理论依据.  相似文献   

20.
Three parallel anaerobic-anoxic/anaerobic-aerobic (AN/AO) processes were developed to enrich denitrifying phosphorus removal bacteria (DPB) for low strength wastewater treatment. The main body of the parallel AN/AO process consists of an AN (anaerobic-anoxic) process and an AO (anaerobic-aerobic) process. In the AO process, the common phosphorus accumulating organisms (PAOs) was dominate, while in the AN process, DPB was dominate, The volume of anaerobic zone(Vana):anoxie zone(Vano) : aerobic zone (Vaer) for the parallel AN/AO process is 1:1:1 in contrast with a Vana:Vaer and Vano:Vaer of 1:2 and 1:4 for a traditional biological nutrient removal process (BNR). Process 3 excels in the 3 processes on the basis of COD, TN and TP removal. For 4 month operation, the effluent COD concentration of process 3 did not exceed 60 mg/L; the effluent TN concentration of process 3 was lower than 15 mg/L; and the effluent TP concentration of process 3 was lower than 1 mg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号