首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 140 毫秒
1.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源.  相似文献   

2.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

3.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

4.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

5.
用离子色谱法对181份PM2.5有效样品中NO-3、SO42-、NH+4、Cl-和F-等5种水溶性离子进行检测分析。结果表明,西安市PM2.5的年均浓度为(71.04±51.80)μg·m-3,季节变化特征表现为:冬季>春季>秋季>夏季。五种水溶性离子的年均浓度为(28.24±31.79)μg·m-3,季节变化特征表现为:冬季>春季>秋季>夏季。各水溶性离子的年均浓度由大到小依次为:NO-3>SO42->NH+4>Cl->F-。NO-3在冬、春、秋三季...  相似文献   

6.
通过实时在线监测了2018年11月27日~2019年1月15日北京市城区PM2.5、水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、F-、Cl-、NO2-、NO3-、SO42-、PO43-)、碳质组分(有机碳OC、元素碳EC)的质量浓度以及气态污染物浓度和气象要素,收集整理了近20年北京市冬季PM2.5、主要离子组分以及碳质组分浓度,分析研究了1999~2018年北京市冬季PM2.5、离子、碳质组分的变化特征,重点探讨了监测期间清洁日与两个典型重污染事件PM2.5及其组分的演变特征.结果表明:研究期间PM2.5浓度为53.5μg/m3,达到近20年北京市冬季较低值,且大气主要污染源由煤烟型污染源转变为燃煤型与机动车尾气复合型污染源.监测期间,湿度高、微弱的西南风导致重污染产生,清洁日、污染事件I与污染事件II PM2.5平均浓度分别为32.5,138.9,146.8μg/m3且不同时段PM2.5日变化趋势存在差异.各离子浓度变化为:NO3- > NH4+ > SO42- > Cl- > K+ > Ca2+ > Na+ > PO43- > F- > NO2-~Mg2+,总水溶性离子浓度为24.6μg/m3占PM2.5总浓度的46.0%,其中SNA浓度占总离子浓度的83.7%,是离子中最主要的组分.碳质组分浓度达到近二十年北京市冬季最低值,变化为:一次有机碳POC > EC > 二次有机碳SOC,OC与EC相关系数达到0.99,一次燃烧源对污染过程有较大贡献.NH4+在清洁日与污染II中富集,主要以(NH42SO4、NH4NO3和NH4Cl形式存在,在污染I中较少,仅以(NH42SO4和NH4NO3存在.在污染I和II期间,SO42-的形成昼夜均受相对湿度与NH3影响;NO3-的形成白天受O3与NH3的影响,夜间受相对湿度和NH3的影响.  相似文献   

7.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

8.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

9.
基于PM、10nm~10μm气溶胶数谱、水溶性离子和气象要素数据,分析了2017年5月3日~8日一次沙尘远距离输送过程中长三角地区气溶胶粒径分布及其化学组成的污染特征.结果表明,此次沙尘伴随天气系统由北往南的传输过程中,PM的浓度逐渐降低,但是高浓度PM持续时间逐渐增加.沙尘在呼和浩特市影响时间为38h,而在南京的影响时间超过60h.沙尘期间气溶胶数浓度谱的峰值向大粒径段偏移,沙尘和非沙尘期间峰值分别位于33和26nm.表面积浓度谱在非沙尘期间为三峰型分布,但是在沙尘期间为四峰型分布.在沙尘期间PM2.5和PM10中水溶性离子的排序为Ca2+ > NH4+ > SO42- > NO3- > Mg2+ > Na+ > Cl- > NO2- > K+ > F-,非沙尘期间为NH4+ > SO42- > NO3- > Mg2+ > Ca2+ > Cl- > NO2- > K+ > Na+ > F-.沙尘期间不同水溶性离子的浓度变化不同,沙尘天PM2.5和PM10中Ca2+浓度分别是非沙尘天的9.5和13.7倍,Na+分别是非沙尘天的4.4倍和4.6倍.沙尘天PM2.5和PM10中Ca2+占总离子的比例分别为24.7%和24.9%,是非沙尘天的4.9和5.7倍.NO3-在PM10中的占总离子的比例为18.7%,高于非沙尘天(13.9%),但是在PM2.5中占总离子的比例仅为7.9%,低于非沙尘天(13.2%).沙尘天F-、Cl-、SO42-、NH4+和K+离子在PM2.5和PM10中所占总离子的比例均低于非沙尘天.  相似文献   

10.
对2017年9月至2018年8月、12月采集的乌鲁木齐市PM2.5、“沙雪”样品和克拉玛依土样的水溶性离子进行分析,并结合城市主要风向、扫描电镜联能谱(SEM/EDS)和后向轨迹模型(HYSPLIT),对环境中盐尘粒子的来源及其对大气颗粒物形成的影响进行了研究.结果表明:PM2.5中总水溶性离子平均浓度为(62.65±64.75)μg/m3,变化范围为0.69~328.60 μg/m3.其中SO42、Ca2+、Na+、Cl-、K+和Mg2+ 6种盐尘粒子浓度分别为(22.73±26.45),(2.11±3.11),(1.85±1.43),(0.40±0.40),(0.28±0.20),(0.21±0.15)μg/m3.四季风向结合HYSPLIT模型结果可知,PM2.5中盐尘粒子主要来源于艾比湖及玛纳斯盐湖的气团;受风沙影响,乌鲁木齐市雪样中Cl-、SO42-、Ca2+、K+、Mg2+和Na+分别增加了30,19,20,5,7和5倍.  相似文献   

11.
对2016年3月南京北郊PM2.5进行采样分析,通过样品中的水溶性离子(Na+、NH4+、K+、Ca2+、Mg2+、Cl-、NO3-、SO42-)和碳质组分(OC、EC),探讨霾污染的特征、来源及硫酸盐形成机制.结果表明,采样期间南京北郊PM2.5平均浓度(103.22±48.5)µg/m3.污染天二次硫酸盐的形成与NO2对SO2的氧化相关性较强,而O3的氧化作用影响较小;清洁天则相反.污染天,具有酸度缓冲作用的矿物粉尘使得气溶胶颗粒物总体呈弱碱性,而碱性环境下又更利于二次硫酸盐的形成.南京北郊早春二次污染严重,SOC主要由大气中碳氢化合物与O3发生光氧化反应生成.污染天主要排放源为机动车尾气排放,其次是生物质和煤炭燃烧;清洁天主要排放源为煤炭燃烧和扬尘,机动车尾气影响较小.  相似文献   

12.
采用时间序列的半参数广义相加模型,在控制了长期趋势、"星期几效应"和气象因素等混杂因素的基础上,分析沈阳市大气污染物及PM2.5中水溶性离子对呼吸系统疾病门诊就诊人数的影响,并按性别和年龄分层建模.结果表明:PM2.5及其各离子成分与呼吸系统疾病门诊人数之间存在关联,并有明显的滞后效应.受冬季供暖燃煤排放影响,PM2.5、NO3-和NH4+呈显著关联,在滞后累积2d后风险最大.最佳滞后时间下,PM2.5的浓度每增加10µg/m3,对应呼吸系统疾病日门诊就诊人数增加百分比(ER)为1.31%(95% CI:1.2%~1.43%);离子成分SO42-、NO3-、NH4+、Cl-、K+、Mg2+、Ca2+和Na+的浓度每增加1个4分位间距(IQR),对应的呼吸系统疾病日门诊就诊人数增加百分比(ER)分别为3.22%(95% CI:2.81%~3.62%)、4.67%(95% CI:4.13%~5.22%)、5.41%(95% CI:4.49%~6.33%)、7.38%(95% CI:3.91%~10.96%)、0.14%(95% CI:-6.34%~7.07%)、7.64%(95% CI:-11.87%~31.47%)、3.57%(95% CI:-2.83%~10.39%)和0.46%(95% CI:-16.64%~21.06%).PM2.5、Cl-、Mg2+、Ca2+和Na+对女性呼吸疾病门诊人数的影响比对男性的影响大.PM2.5、SO42-、Cl-、Ca2+和Na+对≥65岁的老人门诊人数的影响比对15~65岁劳动年龄人群的影响大.表明不同性别、不同年龄由于生理结构和环境因素的不同而引起的差异不同.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号