首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《环境工程》2015,33(1)
贵州地区岩溶发育强烈,地下水环境脆弱。实际工作中进行地下水污染风险评价是可持续发展的重要举措。从地下水保护的角度出发,以贵州西南部某煤电一体化电厂灰场的地下水污染风险评价为例,系统收集了该地区地下水位埋深、含水层介质类型、包气带介质类型、植被分布、污染途径和功能用途等资料。针对贵州特殊岩溶地下水特征及灰场灰渣对地下水环境的影响,建立岩溶地区灰场的地下水污染风险评价指标体系,并运用层次分析法确定各指标权重,经权重叠加运算得风险性评价结果,从而确定其风险性。实例结果表明该灰场的风险性评价结果为2.7295,风险性低。将层次分析法应用于灰场地下水风险评价为岩溶发育地区的灰场选址和地下水防渗提供参考。  相似文献   

2.
对北京燕山石化公司固废堆埋场进行了回顾性评述。分析了堆埋场易发生渗漏的可能途径和石化行业固废淋滤液中主要污染物的特性,分别模拟测定和估算了地基和坝基的渗漏量。现场取样分析认为废渣液及淋滤污水目前对该地区地下水影响较小,工程在运行10a后仍然具有较好的防渗功能。   相似文献   

3.
从环境保护的角度出发,针对灰水溶质运移污染地下水的问题,应用混合防渗材料作为防渗层,通过有限元程序模拟贮灰场的实际运行条件,进行了有无防渗层条件下污染物运移的对比计算分析.结果表明,防渗层可有效地减少灰水渗漏量,缩小污染物的长期扩散范围;在灰场底部和内侧设置防渗层是有效的防污染措施.  相似文献   

4.
司小飞  李元昊  黄艳  李焕萍 《环境工程》2017,35(11):110-113
燃煤发电厂贮灰场对周围的生态环境和当地居民的生活造成很大影响,同时根据国家环境保护法中相关的规定和要求,必须对此制定科学合理的防治措施。结合相关规定及具体案例,对燃煤发电厂贮灰场环境污染与防治进行深入分析,探讨环境防治必要性及防治措施等问题,希望对以后的工程实施起到一定的借鉴作用。  相似文献   

5.
李莉  黄海  朱法华 《环境科学》1997,(5):59-61,67
以江苏徐塘电厂炮车镇灰场为例,建立了炮车镇灰场及邻近地区地下水水质(污染)模型,并选用灰渣溶滤后产生的F-作为模拟因子,对地下水水位变化和F-浓度变化进行了数值模拟.最后利用模型对地下水中F-污染的范围和程度进行了预测.结果表明,模型可靠、合理、实用,为建立灰场后所可能引起的对地下水污染的预测预报提供了科学手段  相似文献   

6.
包气带在地表石油类污染物下渗到地下水的过程中扮演着重要角色,同时包气带受到污染必然会对周围环境,特别是植物的生长造成影响,从而影响人类自身。主要使用HYDRUS软件预测了兰州西固商业石油储备库的渗漏对包气带的影响,分正常工作状况和非正常工作状况两种情况。在正常工作状况下,从5000天到10000天,污染物浓度呈线性增加,到50年左右,包气带底部(下边界)污染物浓度接近0.1mg/cm3。在非正常工作状况下,包气带底部(下边界)浓度增加的速度要远远大于正常工作状况,到50年左右,包气带底部(下边界)浓度达0.5mg/cm3。预测结果可以为相应工作状况下饱和带的溶质迁移模型提供参考依据,对确定饱和带污染物的浓度具有重要的参考意义。  相似文献   

7.
电厂灰场对地下水污染的数值模拟及污染预测   总被引:6,自引:0,他引:6       下载免费PDF全文
李莉  朱法华 《环境科学》1997,18(5):59-61
以江苏徐塘电厂炮车镇灰场为例,建立了炮车镇灰场及邻近地下水水质(污染)模型,并选用灰渣溶滤后产生的F作为模拟因子,对地下水水位变化和F浓度变化进行了数值模拟。最后利用模型对地下水中F^-污染的范围和程度进行了预测,结果表明,模型可靠,合理,实用,为建立灰场后所可能引起的对地下水污染的预测预报提供了科学手段。  相似文献   

8.
用环境同位素研究灰场灰水对周围地下水的影响   总被引:11,自引:0,他引:11       下载免费PDF全文
应用环境同位素理论,根据燃煤火电厂灰场灰水中的氢、氧、硫同位素与天然地下水中的氢、氧、硫同位素存在的差异,建立了鉴别天然地下水和灰水的方法,并研究了灰场灰水对周围地下水的影响程度、范围和主要途径,为今后开展灰场对周围地下水影响的研究,确定地下水是否受到污染,提供了一条新的研究途径.   相似文献   

9.
为评价贵阳市清镇塘关灰场对红枫湖水质的影响,调查研究了灰场附近水域水质的空间变化特征,并对粉煤灰及附近水域沉积物的形貌和成分进行了分析。结果表明:1)灰场对红枫湖水质影响很小,但对灰坝附近的将军湾库区底泥有一定贡献; 2)后六河支流对将军湾库区水质造成一定影响,建议加强对该支流的排污管理; 3)受风蚀和强径流影响,灰坝粉煤灰对附近库区造成潜在危害,建议强化灰场水土保持。  相似文献   

10.
该文运用单因子指数、内梅罗指数法对银川盆地灵武市宁东镇红石湾—马莲台、任家庄煤矿一带的煤矸石堆放区及附近浅层土壤(0~10 cm)中Cu、Pb、Ni、Cr、Cd、Zn、As、Hg八大重金属元素污染情况进行了综合评价分析,并建立了典型土壤剖面来研究不同地理环境和包气带对重金属污染物下渗迁移过程的影响作用。研究发现:以银川市土壤环境背景值为评价标准时,区域内土壤质量主要为尚清洁和轻度污染2个级别,且部分区域Hg的各项相关指数与系数均较大,对土壤污染影响较大,须重点监控;从区域内地理环境来看,煤矸石堆放区域和地表坑洼积水处附近土壤多受煤矸石淋滤液浸染,污染较严重;研究区内浅层土壤沙化严重,包气带结构多为渗透性较强的黏土质粉砂,可加快重金属污染物的下渗,从而造成深部土壤的污染。  相似文献   

11.
针对矿化垃圾反应器处理中晚期垃圾渗滤液时由于反硝化区缺少碳源而导致总氮去除率不佳的问题,开展以优先利用原水中的有机物充当碳源为目的的两段式进水两级矿化垃圾反应器处理工艺的研究。通过控制反应器的曝气量、好氧区和反硝化区,研究了两段式进水两级矿化垃圾反应器处理垃圾渗滤液的效果。结果表明,当进水渗滤液水力负荷为46.0 L/(m~3·d)时,在第一级反应器底部曝气量为1.86 m~3/(m~3·d),第二级反应器中上部曝气量为0.37 m~3/(m~3·d)的条件下,COD、NH_4~+-N、TP的平均去除率分别为84.1%、92.6%、85.6%,运行稳定后TN平均去除率达76.0%,处理效果较好。  相似文献   

12.
我国垃圾焚烧飞灰性质及其重金属浸出特性分析   总被引:9,自引:7,他引:2  
叶暾  王伟  高兴保  万晓  王峰 《环境科学》2007,28(11):2646-2650
调查分析了我国12个垃圾焚烧飞灰样品的性质和重金属浸出规律.结果表明,飞灰的主要组成元素有Si、Ca、Al、Fe、K、Na、Cl 等,除1个样品外,飞灰样品中的重金属元素含量均在0 .5%~3 .0%范围内.由此可见焚烧飞灰具有较大的环境风险,必须按危险废物进行安全管理.应用单批次浸出程序检测结果表明,美国EPA的毒性浸出程序(TCLP)和我国固体废物浸出毒性鉴别程序(GB 5086 .1-1997)对焚烧飞灰中的重金属浸出率偏低,且二者对飞灰危险性评估的差异较大,这主要是受二者不同的浸出液最终的pH值所影响.常规酸中和容量(GANC)浸出试验结果表明,飞灰中重金属的浸出主要受浸出液的最终pH值影响,而该pH值取决于飞灰中碱性物质与浸取剂酸度二者间的相互作用.通过对不同类别程序的浸出过程分析发现,在相同浸取液作用下,单批次式浸出程序的静态平衡终点与连续过流式浸出程序的平衡终点存在较大差异,有必要结合我国飞灰特点和实际处置场景,建立适用于焚烧飞灰的单批次式毒性浸出试验程序,避免对飞灰危险性识别的不足和管理的失控.  相似文献   

13.
粉煤灰多孔陶粒在水处理中的应用研究   总被引:3,自引:1,他引:2  
研究采用电厂的粉煤灰为主要原料制备多孔陶粒,分别将其用作水处理中的微生物载体和吸附剂。挂膜结果表明:COD、氨氮这两项指标的出水基本稳定,去除率高。用多孔陶粒作吸附剂处理含铬废水时,等温吸附实验表明,多孔陶粒吸附水中的铬的等温方程基本符合Langmiur等温方程式,在pH值为酸性时对铬的去除率较高。用HCl和NaOH溶液再生多孔陶粒,酸的效果更好。  相似文献   

14.
电解锰渣-页岩-粉煤灰烧结砖的研制   总被引:2,自引:0,他引:2  
针对湖南湘潭竹埠港地区工业废渣的情况,进行了电解锰渣-页岩-粉煤灰体系烧结制砖的研制.确定了配比、烧结温度和保温时间对烧结砖性能的影响,通过SEM、EDS、抗压强度、毒性浸出、DTA和XRD等检测手段,对烧结前后砖体的结构及各项性能进行了检验.结果显示,电解锰渣、页岩和粉煤灰的配比为4:5:1、烧结温度为1000℃'保...  相似文献   

15.
利用自行开发的活性污泥 2号模型ASMNO .2计算机模拟程序对重庆市某污水厂三种脱氮除磷改造方案 (A O ,A2 O ,倒置A2 O)进行了模拟研究 ,寻求了每一种方案的最佳运行控制参数 .结果表明 :(1)将现有曝气池前端 1 4控制为缺氧而形成A O工艺 ,缺氧区溶解氧浓度为 0 .10mg L ,混合液内回流比为 10 0 % ,可以使TN去除率达到 5 8.6 % ,提高 2 4个百分点 ,TP基本不受影响 ;(2 )将现有曝气池前端 12 %控制为厌氧区 ,2 4 %控制为缺氧区 ,缺氧区溶解氧浓度为 0 .10mg L ,混合液内回流比为 10 0 % ,可以使TN去除率达到 6 2 .1% ,提高约 2 8个百分点 ,TP去除率达到 78.3% ,提高 37个百分点 ;(3)倒置A2 O工艺与常规A2 O工艺的出水水质基本相当 ,但倒置A2 O工艺在工程实践中更易于实现 ;(4)三种工艺出水COD和氨氮均能达到国家规定的一级排放标准 .  相似文献   

16.
城市垃圾焚烧飞灰的硅酸盐水泥稳定化效果研究   总被引:7,自引:4,他引:3  
蒋建国  许鑫  张妍 《环境科学》2006,27(12):2564-2569
采用南方某城市生活垃圾焚烧厂的飞灰进行了硅酸盐水泥稳定化效果及工艺的研究,实验分别就水泥添加量、添加剂的使用、养护时间和浸取剂pH值等因素,考察了飞灰中重金属(Cd,Pb,Cu,Zn)的稳定化效果.结果表明,当硅酸盐水泥/飞灰=10%(质量比)时,采用硅酸盐水泥处理焚烧飞灰的稳定化产物中重金属的浸出浓度都已满足危险废物填埋场入场控制标准;当使用硅酸盐水泥对焚烧飞灰进行稳定化处理时,1d后其水化反应基本完成,此后稳定化处理后焚烧飞灰的重金属浸出毒性趋于稳定;pH相关性实验表明,当使用浸取剂的pH值在3~11的范围变化时,处理后的焚烧飞灰其浸出液的pH基本稳定在7左右,证明该法产生的稳定化产物对环境pH值有很好的适应性.  相似文献   

17.
本文研究了我国五个火电厂的飞灰、灰水及灰水塘底泥中的砷、硒。分析结果表明:飞灰中砷含量0.70—11.72mg/kg,平均为5.80mg/kg,硒含量0.45—5.92mg/kg,平均值2.57mg/kg。灰水中砷、硒含量分别为2.01和0.70mg/1;灰水塘泥中砷含量高达17.01mg/kg,硒含量高达2.Olmg/kg。六种溶提剂对飞灰中砷、硒的溶解能力次序为:0.07MHC1>B溶液(pH3.5)>A溶液(pH5.5)>>0.5M乙酸>碱性溶液(PH8.5)>蒸馏水。溶提剂酸度愈高,对飞灰中砷、硒的溶解率也愈高。模拟酸雨A(pH5.5)对飞灰中砷,硒的平均溶解率分别为41.94%和57.97%;模拟酸雨B(pH3.5)则分别是63.50%和70.56%。酸雨对飞灰中砷、硒的溶解及其污染起着很大作用。   相似文献   

18.
燃煤飞灰在堆放、填埋过程中,固定于灰中的汞可能被再次释放,而带来二次污染。为研究飞灰中汞对环境的影响,本研究参照国标规定的渗滤方法和美国毒性特征浸出程序,对飞灰中汞的渗滤特性进行研究,即研究不同类型酸浸取液、浸取液pH值以及液固比对汞渗滤特性的影响。不同酸的浸取试验结果表明:硝酸的汞渗出浓度最大,硫酸最小,经化学动力学分析是由于不同类型酸对于玻璃体中各种氧化物溶解能力的差异性所致。采用硫酸渗滤时,出现反常的渗滤特征,并发现该现象与飞灰二次相生成物有关。滤液汞浓度随浸取液pH的增大成指数曲线下降趋势;随液固比增加,滤液汞浓度呈单峰分布,经化学动力学分析表明氢离子与硅铝玻璃体的配比是产生这一现象的主要原因;本研究对于燃煤汞污染的深度控制及治理方面有指导意义。  相似文献   

19.
焚烧飞灰卫生填埋共处置的螯合稳定化技术研究   总被引:1,自引:0,他引:1  
叶暾  王伟  高兴保  万晓 《环境科学》2008,29(4):1119-1123
对4种垃圾焚烧飞灰的性质进行了分析,其主要元素以Si、Ca、Al、Cl等为主,此外还含有相当数量的重金属如Pb、Zn、Cu、Cr、Cd等,存在很大的环境风险.而飞灰进入卫生填埋场进行共处置是现实可行的出路,为保证共处置的安全性,针对共处置情景制订的浸出毒性浸出方法提高了浸取液酸强度(0.3 mol·L-1,以H 计),此浸出方法已于2007-05-01日开始执行.采用二硫代氨基甲酸盐(dithiocarbamate)类螯合剂对焚烧飞灰进行了稳定化处理工艺实验,结果表明,DTC类螯合剂通过螯合反应作用于飞灰中的重金属,当DTC类螯合剂投加量为3%(质量分数)时,4种飞灰中重金属的浸出值均能达到在卫生填埋场和垃圾进行共处置的要求.  相似文献   

20.
填埋是目前处理生活垃圾焚烧飞灰的主要方式之一,然而飞灰中重金属随渗滤液浸出会对环境产生污染隐患,药剂固化飞灰中重金属是主要预处理方式. 其中,化学药剂中的螯合剂类对飞灰中重金属的固化效果较好,国内外使用广泛. 本文通过对比多种有机螯合剂的重金属固化率发现,具有不同官能团(醛基、羟基、羧基、磷酸官能团和含硫基官能团)的螯合剂的固化效果有明显差异,其中含有磷酸官能团和硫基官能团的螯合剂对飞灰中重金属的固化效果普遍优于含醛基、羟基、羧基官能团的螯合剂. 因此,可根据填埋场渗滤液的酸碱性,通过添加羧基、羟基或磷酸官能团改性有机螯合剂,使填埋场渗滤液达到中性. 同时,螯合固化体形成正四面体结构最为稳定,可以降低飞灰中重金属浸出率,减少填埋场污染隐患.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号