首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g?1 dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.  相似文献   

2.
In this study, the refuse from 12 landfills of various ages ranging from fresh refuse to material 11 years old was collected, and changes in the bio-stability parameters were determined. The parameters measured included cellulose, lignin, biochemical methane potential (BMP) and volatile solids, along with plastics. These parameters, along with the cellulose to lignin ratio were compared to determine which were most indicative of the bio-stability of the refuse. Lignin and volatile solids measurements were affected by plastics in refuse samples. Plastics increased both lignin and volatile solids measurements by approximately 10%. Cellulose and volatile solids measurements correlated well with age, each other, and with BMP measurements and were therefore considered the best parameters to determine stability. Data for the Riverbend landfill, a landfill with a moisture content of 48%, which is similar to that of bioreactor landfills, showed that degradation was nearly complete after 5 years as indicated by low values for cellulose and BMP.  相似文献   

3.
A series of experimental runs were conducted from 1995 to 1999 in Madison (WI, USA) with the goal to investigate the biodegradation process of seven (7) solid waste components and mixtures of them under near optimal aerobic conditions. It was shown that substrates with high initial lignin contents or high initial HWSM contents were observed to have relatively low and high degradation extents, respectively. Two linear equations were derived that correlate degradation extent (as indicated by the volatile solids reduction) to initial lignin and initial HWSM contents separately. The lignin equation was compared to a similar equation previously developed for anaerobic environments by Chandler et al. (Predicting methane fermentation biodegradability. In: Biotechnology and Bioengineering Symposium No. 10 (1980) New York: John Wiley & Sons). With comparison to the Chandler formula, lignin was found to be less inhibitory to the overall substrate decomposition in aerobic environments compared to anaerobic ones. Cellulose loss contributed to a higher than 50% to the overall dry mass loss for all substrates studied. In addition, the cellulose to lignin (C/L) ratio appeared to be a relatively accurate compost maturity indicator, since it reduced to a value less than 0.5 for most substrates that had reached their degradation extent.  相似文献   

4.
A methodology for estimating the methane emissions from waste landfills in Hanoi, Vietnam, as part of a case study on Asian cities, was derived based on a survey of documents and statistics related to waste management, interviews with persons in charge, and field investigations at landfill sites. The waste management system in Hanoi was analyzed to evaluate the methane emissions from waste landfill sites. The quantity of waste deposited into the landfill was evaluated from an investigation of the waste stream. The composition of municipal waste was surveyed in several districts in the Hanoi city area, and the quantities of degradable organic waste that had been deposited into landfill for the past 15 years were estimated. Field surveys on methane emissions from landfills of different ages (0.5, 2, and 8 years) were conducted and their methane emissions were estimated to be 120, 22.5, and 4.38 ml/min/m2, respectively. The first-order reaction rate of methane generation was obtained as 0.51/year. Methane emissions from waste landfills were calculated by a first-order decay model using this emission factor and the amount of landfilled degradable waste. The estimates of methane emissions using the model accorded well with the estimates of the field survey. These results revealed that methane emissions from waste landfills estimated by regional-specific and precise information on the waste stream are essential for accurately determining the behavior of methane emissions from waste landfills in the past, present, and future.  相似文献   

5.
The objectives of this study were to characterize development of bacterial and archaeal populations during biodegradation of municipal solid waste (MSW) and to link specific methanogens to methane generation. Experiments were conducted in three 0.61-m-diameter by 0.90-m-tall laboratory reactors to simulate MSW bioreactor landfills. Pyrosequencing of 16S rRNA genes was used to characterize microbial communities in both leachate and solid waste. Microbial assemblages in effluent leachate were similar between reactors during peak methane generation. Specific groups within the Bacteroidetes and Thermatogae phyla were present in all samples and were particularly abundant during peak methane generation. Microbial communities were not similar in leachate and solid fractions assayed at the end of reactor operation; solid waste contained a more abundant bacterial community of cellulose-degrading organisms (e.g., Firmicutes). Specific methanogen populations were assessed using quantitative polymerase chain reaction. Methanomicrobiales, Methanosarcinaceae, and Methanobacteriales were the predominant methanogens in all reactors, with Methanomicrobiales consistently the most abundant. Methanogen growth phases coincided with accelerated methane production, and cumulative methane yield increased with increasing total methanogen abundance. The difference in methanogen populations and corresponding methane yield is attributed to different initial cellulose and hemicellulose contents of the MSW. Higher initial cellulose and hemicellulose contents supported growth of larger methanogen populations that resulted in higher methane yield.  相似文献   

6.
Two different waste-derived by-products were examined and compared. Based on the thermogravimetric tests performed, it was proved that their decomposition occurs in two weight loss steps represented by two shoulders in the derivative thermogravimetric curves. The first shoulder is attributed to the devolatilisation of hemicellulose, cellulose and lignin and the second one to the plastic fraction of the waste. Similarities in the degradation behaviour were observed for both wastes, despite of their different origin. Increased plastic fractions resulted in slightly higher conversions and lower pyrolysis rates. Enhanced lignocellulosic fractions led to higher rates during combustion. The lignocellulosic fraction was increased proportionally to the inorganic residue that remained after combustion. A wide variation of weight losses was attained even in refuse-derived fuel (RDF) samples of the same origin, whilst stronger deviations were observed in the decomposition of the plastic fraction. The independent parallel, first-order, reactions model was elaborated for the kinetic analysis of the pyrolysis results. The thermal degradation of the RDF samples was modelled assuming four parallel reactions corresponding to the devolatilisation of cellulose, hemicellulose, lignin and plastics. Increased activation energies were calculated for the plastics fraction, whilst lignin presented the lowest contribution in the pyrolysis of the samples. Generally, both RDF samples presented similar kinetic constants despite their heterogeneity.  相似文献   

7.
An increasing number of landfills are operated to accelerate waste decomposition through liquids addition (e.g., leachate recirculation) as a wet landfill. Landfill design and regulation often depend on utilizing landfill gas production models that require an estimate of a first-order gas generation rate constant, k. Consequently, several studies have estimated k using collected gas volumes from operating wet landfills. Research was conducted to examine an alternative approach in which k is estimated not from collected landfill gas but from solid waste samples collected over time and analyzed for remaining gas yield. To achieve this goal, waste samples were collected from 1990 through 2007 at two full-scale landfills in Florida that practiced liquids addition. Methane yields were measured from waste samples collected over time, including periods before and after leachate recirculation, and the results were applied to a first-order decay model to estimate rate constants for each of the sites. An initial, intensive processing step was conducted to exclude non-biodegradable components from the methane yield testing procedure. The resulting rate constants for the two landfills examined were 0.47 yr(-1) and 0.21 yr(-1). These results expectedly exceeded the United States Environmental Protection Agency's rate constants for dry and conventional landfills (0.02-0.05 yr(-1)), but they are comparable to wet landfill rate constants derived using landfill gas data (0.1-0.3 yr(-1)).  相似文献   

8.
This study investigates for the first time the feasibility of isolating nanocellulose from several selected feedstocks via a novel Ni(II)-hydrolysis process, including lignocellulosic biomasses (oil palm trunk, banana peel and coconut husk) and processed biomasses (newspaper, tissue paper and cotton linter), with an obtained gravimetric yield ranging from 59.6 to 86.2%. The isolation of nanocellulose products from these selected feedstocks was verified by the successive removal of most of their non-cellulosic components (lignin and hemicellulose) and cellulose amorphous regions, the increase in the crystallinity index and the nanoscale of the individual crystals. Most importantly, the resultant nanocellulose products rendered better thermal stability than that of corresponding original sources, which are highly potential to be utilized as the new renewable sources of reinforcement materials with potential applications in bio-nanocomposites and thermoplastics. Therefore, this work proves the viability of direct production of nanocellulose from a variety of cellulosic sources by using Ni(II)-based transition metal salt catalyst. The results suggested that the concept of waste to wealth could be well executed from the obtained nanocellulose, which are greatly potential for various industrial applications.  相似文献   

9.
Three microbial isolates, identified as Bacillus shackletonni, Streptomyces thermovulgaris and Ureibacillus thermosphaericus were tested as inoculants in composting processes in relation to their capacity to improve lignocellulose degradation. Different wastes from agricultural activities were used as raw material for the heaps: pepper plant waste (PPW) as the main component and olive-oil mill waste (OMW), almond shell (AS), pruning waste (PW) and rice straw (RS) as additives. Cellulose was more extensively degraded than hemicellulose and lignin, although the use of inoculants (B. shackletonni and S. thermovulgaris) improved the action of the autochthonous microbiota just in the AS heaps. A higher efficiency was observed for lignin, since lower concentrations of this polymer were detected in the inoculated heaps in relation to control heaps. U. thermosphaericus was the most efficient microorganism since inoculation with this strain decreased the final lignin content in a range between 17.23% and 24.34%. S. thermovulgaris and B. shackletonni led to a higher reduction of the lignin levels in the OMW and PW heaps (14.25% and 19.07% less lignin than control heaps) and OMW (13%), respectively. The composting process can therefore be improved by means of inoculation if the microorganisms used for this purpose are appropriate for the characteristics of the raw material.  相似文献   

10.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

11.
The magnitude of annual global emissions of methane from municipal solid waste landfills without landfill gas control systems implies that these landfills are significant contributors to the atmospheric load of greenhouse gases. There have been a number of field studies undertaken internationally to measure actual fluxes of methane and carbon dioxide from landfills, with a view to corroborating modelled predictions of the contribution of landfills to the global greenhouse gas budget. The vast majority of these studies have been undertaken in more temperate climates and in developed countries. This paper reports a study of landfill gas emissions from four large landfills located in the semi-arid interior of South Africa. A static accumulation chamber was used and measurements were made at each site over a period of two to three days. The results were analysed by three different methods, all of them leading to the same general conclusion that landfill gas emission rates were lower than expected. A common conclusion based on results from all four sites was that capping of landfills in semi-arid climates with low permeability covers would probably significantly retard the already low rate of waste degradation and thus gas generation. While this may be regarded as advantageous in the short term, it cannot be relied upon in perpetuity as clayey landfill covers will inevitably desiccate and crack in a semiarid environment. In addition, reasonable after-care periods for such landfills are likely to extend well beyond the currently stipulated 30-year period, and efforts to encourage energy recovery from landfills may be hampered because gas generation rates decrease as the waste dries out under conditions of minimal recharge from precipitation. A landfill cover that allows small amounts of percolation of rainfall into the waste may therefore in fact be beneficial in semiarid climates, although care would need to be taken to carefully regulate this infiltration.  相似文献   

12.
The heterogeneity of biomass makes it difficult if not impossible to make sweeping generalizations concerning thermochemical treatment systems and the optimal equipment to be used in them. Chemical differences in the structural components of the biomass (cellulose, hemicellulose, and lignin) have a direct impact on its chemical reactivity. The aim of this research was to study the influence of the organic components of the raw material from olive trees (leaves, pruning residues, and wood) in the combustion behavior of this biomass, as well as to find the component responsible for the higher ash content of olive leaves. Accordingly, the study used a thermogravimetric analyzer to monitor the different states and complex transitions that occurred in the biomass as the temperature varied. The decomposition rates of the different samples were analyzed in order to establish a link between each combustion phase and the composition of the raw materials. Two methods were used to determine the hemicellulose and cellulose contents of biomass from olive trees. Significant differences among the results obtained by the different methods were observed, as well as important variations regarding the chemical composition and consequently the thermal behavior of the raw materials tested.  相似文献   

13.
State and stability or reactivity of waste materials are important properties that must be determined to obtain information about the future behavior and the emission potential of the materials. Different chemical and biological parameters are used to describe the stage of organic matter in waste materials. Fourier transform infrared spectroscopy provides information about the chemistry of waste materials in a general way. Several indicator bands that are referred to functional groups represent components or metabolic products. Their presence and intensity or their absence shed light on the phase of degradation or stabilization. The rapid assessment of the stage of organic matter decomposition is a very important field of application. Therefore, infrared spectroscopy is an appropriate tool for process and quality control, for the assessment of abandoned landfills and for checking of the successful landfill remediation. A wide range of applications are presented in this study for different waste materials. Progressing stages of a typical yard/kitchen waste composting process are shown. The fate of anaerobically "stabilized" leftovers in a subsequent liquid aerobic process is revealed by spectroscopic characteristics. A compost that underwent the biological stabilization process is distinguished from a "substrate" that comprises immature biogenic waste mixed with mineral compounds. Infrared spectra of freeze-dried leachate from untreated and aerated landfill material prove the effect of the aerobic treatment during 10 weeks in laboratory-scale experiments.  相似文献   

14.
The current food waste leachate (FWL) disposal practice in Korea warrants urgent attention and necessary action to develop an innovative and sustainable disposal strategy, which is both environmentally friendly and economically beneficial. In this study, methane production by FWL injection into a municipal solid waste landfill with landfill gas (LFG) recovery facility was evaluated for a period of more than 4 months. With the target of recovering LFG with methane content ~50%, optimum LFG extraction rate was decided by a trial and error approach during the field investigation in five different phases. The results showed that, upon FWL injection, LFG extraction rate of ~20 m(3)/h was reasonable to recover LFG with methane content ~58%. Considering the estimated methane production potential of 31.7 m(3) CH(4) per ton of FWL, methane recovery from the landfill was enhanced by 14%. The scientific findings of this short-term investigation indicates that FWL can be injected into the existing sanitary landfills to tackle the present issue and such landfills with efficient liner and gas collection facility can be utilized as absolute and sustainable environmental infrastructures.  相似文献   

15.
The first-order decay (FOD) model is widely used to estimate landfill gas generation for emissions inventories, life cycle assessments, and regulation. The FOD model has inherent uncertainty due to underlying uncertainty in model parameters and a lack of opportunities to validate it with complete field-scale landfill data sets. The objectives of this paper were to estimate methane generation, fugitive methane emissions, and aggregated collection efficiency for landfills through a mass balance approach using the FOD model for gas generation coupled with literature values for cover-specific collection efficiency and methane oxidation. This study is unique and valuable because actual field data were used in comparison with modeled data. The magnitude and variation of emissions were estimated for three landfills using site-specific model parameters and gas collection data, and compared to vertical radial plume mapping emissions measurements. For the three landfills, the modeling approach slightly under-predicted measured emissions and over-estimated aggregated collection efficiency, but the two approaches yielded statistically equivalent uncertainties expressed as coefficients of variation. Sources of uncertainty include challenges in large-scale field measurement of emissions and spatial and temporal fluctuations in methane flow balance components (generated, collected, oxidized, and emitted methane). Additional publication of sets of field-scale measurement data and methane flow balance components will reduce the uncertainty in future estimates of fugitive emissions.  相似文献   

16.
Banana fibers, as well as other lignocellulosic fibers, are constituted of cellulose, hemicellulose, lignin, pectin, wax and water soluble components. The abundance of this fiber combined with the ease of its processing is an attractive feature, which makes it a valuable substitute for synthetic fibers that are potentially toxic. In this work, the structure characterization of the banana fiber modified by alkaline treatment was studied. Some important properties of this fiber changed due to some chemical treatments, such as the crystalline fraction, dielectric behavior, metal removal (governed by solution pH) and biodegradation. Our results showed that treated banana fiber is a low cost alternative for metal removal in aqueous industry effluents. Thus, for regions with low resources, the biosorbents are an alternative to diminish the impact of pollution caused by local industries, besides being a biodegradable product.  相似文献   

17.
This paper presents a model using fuzzy synthetic evaluation to estimate the methane generation rate constant, k, for landfills. Four major parameters, precipitation, temperature, waste composition and landfill depth were used as inputs to the model. Whereas, these parameters are known to impact the methane generation, mathematical relationships between them and the methane generation rate constant required to estimate methane generation in landfills, are not known. In addition, the spatial variations of k within a landfill combined with the necessity of site-specific information to estimate its value, makes k one of the most elusive parameters in the accurate prediction of methane generation within a landfill. In this paper, a fuzzy technique was used to develop a model to predict the methane generation rate constant. The model was calibrated and verified using k values from 42 locations. Data from 10 sites were used to calibrate the model and the rest were used to verify it. The model predictions are reasonably accurate. A sensitivity analysis was also conducted to investigate the effect of uncertainty in the input parameters on the generation rate constant.  相似文献   

18.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

19.
Municipal solid waste (MSW) landfills worldwide are experiencing the consequences of conventional landfilling techniques, whereby anaerobic conditions are created within the landfilled waste. Under anaerobic conditions within a landfill site slow stabilization of the waste mass occurs, producing methane, (an explosive 'green house' gas) and leachate (which can pollute groundwater) over long periods of time. As a potential solution, it was demonstrated that the aerobic degradation of MSW within a landfill can significantly increase the rate of waste decomposition and settlement, decrease the methane production and leachate leaving the system, and potentially increase the operational life of the site. Readily integrated into the existing landfill infrastructure, this approach can safely and cost-effectively convert a MSW landfill from anaerobic to aerobic degradation processes, thereby effectively composting much of the organic portions (one of the potentially polluting elements in a conventional landfill site) of the waste. This paper summarizes the successful results of two separate aerobic landfill projects located in Georgia (USA) and discusses the potential economic and environmental impacts to worldwide solid waste management practices.  相似文献   

20.
Bioreactor landfills are designed to accelerate municipal solid waste biodegradation and stabilization; however, the uncaptured methane gas escapes to the atmosphere during their filling. This research investigates the implementation of a novel methane emission control technique that involves thin biocovers (TBC) placed as intermediate waste covers to oxidize methane without affecting the operation of bioreactor landfills. Batch incubation experiments were conducted for selecting the optimum TBC materials, capable of oxidizing methane to carbon dioxide by methanotrophic bacteria. Column experiments were performed to investigate the TBC performance under varying moisture content, compost-to-sawdust ratio, methane flow rate, and biocover thickness. Overall, the optimum TBC is comprised of a 30-cm thick bed of 0-10mass% sawdust mixed with compost, having a moisture content of 52% ww, which showed 100% CH4 oxidation efficiency over an extended period of time even at a relatively high methane inlet load of 9.4gm(-3)h(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号