首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 948 毫秒
1.
春季东、黄海溶解甲烷的分布和海气交换通量   总被引:2,自引:1,他引:1  
于2011年3月17日~4月6日对东、黄海海域进行了大面调查,采集了45个站位不同深度的海水样品,对溶解甲烷(CH4)浓度进行了测定,并估算了其海-气交换通量.结果表明,东、黄海表层海水中溶解甲烷的浓度变化范围是2.39~29.67nmol.L-1,底层海水中甲烷浓度范围是2.63~30.63 nmol.L-1,底层浓度略高于表层,表明底层水体或沉积物中存在甲烷的源.春季东、黄海海域表、底层溶解甲烷的分布特征基本一致,即从近岸向远海逐渐降低,主要受长江冲淡水输入和黑潮水入侵的影响.春季东、黄海海域表层海水中CH4饱和度为93%~1 038%.利用Liss and Merlivat公式(LM86)、Wanninkhof公式(W92)和现场测定的风速估算出春季东、黄海海域CH4的海-气交换通量分别为(2.85±5.11)μmol.(m2.d)-1和(5.18±9.99)μmol.(m2.d)-1,根据本研究结果和文献数据初步估算出东海和黄海年释放甲烷量分别为7.05×10-2~12.0×10-2Tg.a-1和1.17×10-2~2.20×10-2Tg.a-1.春季东、黄海海域表层海水中CH4均呈过饱和状态,是大气中CH4的净源.  相似文献   

2.
选择三江平原典型的毛果苔草沼泽湿地为研究对象,测定了沼泽湿地孔隙水中水溶性碳、氮浓度、CH4浓度和CH4排放通量,以及相关环境因子;研究了沼泽水中水溶性有机碳、氮浓度变化特征,探讨了沼泽湿地孔隙水中CH4浓度和排放通量季节性变化及发生原因.结果表明,三江平原沼泽湿地土壤孔隙水中DOC浓度有明显的季节变化(p<0.01).最高值(剖面平均值为95.1 mg·L-1)出现在6月份,9和10月份出现最低值(剖面平均值均为79.3 mg·L-1),剖面上浓集中心位于15~30 cm.孔隙水中NH4 -N和NO-3-N浓度也有明显的季节变化,而DON变化不明显.孔隙水中CH4浓度在剖面上的分布特征与DOC一致,高浓度中心位于20~30 cm.除6月份外,孔隙水甲烷浓度与土壤温度和DOC浓度有显著的正相关关系,与NH4 -N和NO3-N均没有显著相关性.土壤温度和孔隙水中DOC浓度是影响沼泽湿地产CH4能力的重要因素.CH4排放通量与土壤温度和积水深度呈很好的指数关系,与剖面CH4浓度和孔隙水NH4 -N浓度有显著的正相关关系.CH4排放通量与孔隙水DOC浓度相关性不显著.  相似文献   

3.
黔中喀斯特石漠化地区土壤温室气体浓度的时空分布特征   总被引:3,自引:0,他引:3  
刘芳  刘丛强  王仕禄  吕迎春 《环境科学》2009,30(11):3136-3141
2006~2007年对喀斯特石漠化地区土壤剖面中CO2、N2O和CH4的浓度分布进行观测.结果表明,土壤剖面中CO2、N2O和CH4浓度分别介于530.2~31512.6、0.27~0.67和0.1~3.5μL.L-1.总体上,自地表向下,CO2和N2O浓度逐渐增大,CH4浓度则为逐渐减小,但在阴冷潮湿的10、11月和1月,15cm以下土层中CO2和N2O浓度随着深度的增加逐渐减小,CH4浓度则明显增加.土壤温度、水分同时影响剖面中CO2、N2O和CH4的时空分布,但影响效应以及作用的土层深度有所不同.相关分析结果表明,土壤中CO2和N2O浓度的时空分布显著正相关(r为0.780~0.894,p0.05~0.01),相关关系受环境因子的影响;CO2和CH4的时空分布则呈显著负相关关系(r=330,p0.01);N2O和CH4的空间分布为互逆关系,但只在土壤水分较大月份达到显著水平(r为-0.829~-0.956,p0.05~0.01).  相似文献   

4.
东北三江平原土壤氧化CH4研究   总被引:8,自引:0,他引:8  
三江平原土壤不同深度氧化大气浓度CH4和高浓度CH4的速率具有明显的垂直差异 .2个非淹水土壤整个剖面都具有氧化大气浓度CH4的潜力 ,以表层土的速率为最大 .非淹水的耕作土壤残留的有机质层仍保留了较强的氧化大气浓度CH4潜力 ,氧化CH4速率是耕作层的 2 0倍 .淹水土壤的大部分层次不具有氧化大气浓度CH4的潜力 .所有供试土壤均能消耗高浓度CH4,泥炭含量较高的土壤层次比矿质层氧化高浓度CH4的速率高  相似文献   

5.
本文采用AIRS仪器遥感观察获得的2003至2010年CH4产品L3数据的月平均结果.分析了三峡库区CH4浓度的时空变化特征。将空间分辨率为1°×1°的CH4数据产品联合成20X20,选取三峡库区周边12个网格点。结果表明2003至2010年三峡库区周边区域CH4浓度有明显的季节变化.未发现显著的年变化。不同地区cH4浓度与平均浓度的偏差均在仪器测量误差范围以内。未发现不同地区CH4浓度分布和变化规律有明显的差异。  相似文献   

6.
以河道型水库-西北口水库为研究对象,于2021年12月采用新型快速水-气平衡装置(FaRAGE)结合温室气体分析仪对其表层水体,垂向剖面溶解甲烷(CH4)浓度进行监测,并采集代表性河段表层水体及库底沉积物,分别测定水体CH4氧化速率与沉积物CH4释放速率,初步探讨了河道型水库溶解CH4浓度的空间异质性及其影响因素.结果表明,水库表层水体溶解CH4浓度为0.02~0.42μmol/L (平均值为0.11±0.08μmol/L),从库首到库尾呈递增趋势;水体溶解CH4浓度的空间异质性受水库内部CH4产生,消耗及河道入流等多因素的综合作用,其中库尾水体因沉积物CH4产生量大且低水深影响下CH4消耗量较小而呈现高溶解浓度,库首水体则因为CH4产生量相对较小且高水深影响下的CH4消耗量较大而呈低溶解浓度;同时,河道入流可能是影响水体溶解CH4浓度垂向分层的原因之一.  相似文献   

7.
通过采集阳宗海表层水样、上覆水水样和表层沉积物,测定水体砷含量和沉积物砷形态的组成,探讨阳宗海砷污染治理后表层水、上覆水和沉积物砷的空间分布特征和季节变化规律。结果表明,阳宗海表层水中高砷区域分布在西部和北部,平均浓度为18.46μg/L;上覆水中高砷区只集中在北部和东南部,上覆水总砷平均浓度为25.39μg/L;除春季表层水总砷浓度高于上覆水,其他三个季节表层水和上覆水总砷浓度差异不大,平均浓度为35μg/L。水体总砷浓度为春季含量最低,沉积物总砷春季含量最高。阳宗海表层沉积物砷平均浓度为24.13mg/kg,主要以残渣态砷为主,离子态砷、碳酸盐结合态砷和铁锰结合态砷含量很低。综上所述,阳宗海经过治理后,目前湖泊水体和沉积物中的砷浓度逐渐下降,生态风险进一步降低。  相似文献   

8.
杨平  张子川  杜威宁  黄佳芳  仝川 《环境科学》2015,36(10):3633-3640
以闽江口短叶茳芏沼泽湿地为研究对象,沿半咸水至淡水的盐度梯度采集土壤样品,测定分析样品间隙水溶解性CH4浓度及其主要理化指标,探讨了河口沼泽湿地间隙水溶解性CH4浓度的时空特征及其影响因子.结果表明:1夏季鳝鱼滩、蝙蝠洲和下洋洲湿地间隙水CH4浓度均值分别为331.18、299.94和638.58μmol·L-1,冬季均值分别为9.04、266.67和322.68μmol·L-1,呈现夏季显著高于冬季的时间动态特征(P0.05);2沿半咸水至淡水的盐度梯度,间隙水溶解性CH4浓度呈现递增的空间分布特征;3土壤间隙水CH4浓度与土温、DOC呈显著正相关关系,与土壤p H、盐分和间隙水SO2-4、Cl-浓度呈显著(P0.05)或极显著负相关关系(P0.01),河口盐度梯度下短叶茳芏沼泽湿地间隙水CH4浓度时空特征是土壤理化性质和潮汐等综合作用的结果.  相似文献   

9.
气象因素对长三角背景地区甲烷浓度的影响分析   总被引:3,自引:1,他引:2  
通过分析2009年1月~2011年12月临安区域大气本底站在线观测获得的CH4浓度,研究地面风向、地面风速、地面气温、日照等气象因素对长三角背景地区CH4浓度的影响.结果表明,临安站CH4浓度的日变化分布表现为单峰型形态,下午低、凌晨高,浓度日变幅在19.0×10-9~74.7×10-9(摩尔分数)之间;季节变化特征表现为春季低、秋季高,月均浓度分布在1 955.7×10-9~2 036.2×10-9之间.NE~SSE风向上CH4浓度较高,SW~NNW风向上CH4浓度较低;地面风速越大,CH4浓度越低;地面气温升高,CH4浓度出现先升后降的分布;随着日照时数的增加,CH4浓度亦表现为先升后降的分布特征.  相似文献   

10.
借助乙炔(C2H2)抑制和添加外源铵盐,采用批式培养试验,在初始CH4浓度为16%的条件下模拟填埋场高CH4浓度环境,通过分析样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率,研究了填埋场覆盖土、矿化垃圾、砂土和黏土中氨氧化菌对CH4协同氧化及铵抑制作用.结果表明:4种供试样品中氨氧化菌对CH4氧化的贡献率在5.64%~16.24%之间,次序为砂土黏土覆盖土矿化垃圾,覆盖土中的贡献率为14.90%,比矿化垃圾低8.25%,填埋场样品(矿化垃圾和覆盖土)是一般土壤(砂土和黏土)的1.8~10.9倍.铵对CH4氧化过程的抑制率在11.90%~24.84%之间,次序为砂土黏土覆盖土矿化垃圾,覆盖土中为23.21%,比矿化垃圾低6.56%,填埋场样品是一般土壤的0.9~2.1倍.填埋场样品中氨氧化菌对CH4氧化的贡献率及铵对CH4氧化的抑制率明显高于一般土壤.  相似文献   

11.
为了更好的认识不同富营养化区域甲烷(CH4)排放通量及途径的时空异质性,本文以我国典型富营养化浅水湖泊-巢湖为研究对象,设置西北湖湾、西湖心和中湖心3个研究点位,采用漂浮通量箱和经验模型分析等方法对其水-气界面CH4排放通量与途径进行季节性研究.结果表明水体与沉积物中CH4溶存浓度、水-气界面CH4排放通量同水体营养盐水平及叶绿素a含量的空间变化相一致,且均表现为西北湖湾最高,其水体CH4溶存浓度为(0.178 ±0.002)~(1.123 ±0.026)μmol/L、表层沉积物中CH4含量为(70.5 ±30.7)~(189 ±97.0)μmol/L、CH4总排放通量为(50.1 ±2.93)~(1232 ±28.6)μmol/(m2·h);3个点位的CH4扩散通量占总排放量的7.3%~42.9%,冒泡通量占57.1%~92.7%,富营养化程度最高的西北湖湾冒泡通量占比最高;CH4排放通量大小与途径同时受季节变化影响,夏季CH4冒泡与总排放通量均最高,其中冒泡对总通量的贡献高达98.1%.  相似文献   

12.
以宜昌境内喀斯特河流下牢溪为研究对象,通过对流域内15个采样点为期1a间隔约2周1次的水量、水质及CH4浓度同步监测,探讨河流溶存CH4浓度时空变化规律及影响因素.结果表明:下牢溪溶存CH4浓度变化范围为0.002~1.492μmol/L,全年平均浓度0.133μmol/L,整体表现为大气CH4的源.河流溶存CH4浓度呈现夏秋高、冬春低的变化特征,主要受温度驱动.雨季CH4浓度受温度和降雨共同调控.温度越高,产生流量稀释效应的降雨量阈值也越大.下牢溪CH4浓度空间分异性显著,小型拦水坝前浓度最高,最低值出现在河底坡降较大的天然峡谷型河道.人为活动不同程度的提高了相应河段的CH4浓度水平,是小流域CH4浓度空间分布格局的重要影响因素.流域CH4浓度空间分布无明显时间稳定性特征,这可能与陆源输入及水平、垂向输出等动态因素有关,实施全流域采样监测对小型河流碳排放估算十分必要.  相似文献   

13.
冒泡是甲烷排放的主要途径之一,为量化太湖藻型湖区CH4冒泡通量及其占总通量的比例,本研究采用静态箱-便携式温室气体自动分析仪方法对春、夏季太湖梅梁湾进行了多日连续观测.结果表明,太湖藻型湖区春、夏季CH4冒泡通量均存在白天高于夜间的日变化特征.春、夏季CH4冒泡通量分别为1.843、104.497nmol/(m2·s),占总通量的比例分别为31.2%和68.6%,即冒泡是夏季CH4排放的主要方式,而春季CH4排放则以扩散为主.在小时及日尺度上,CH4冒泡通量与温度(气温、表面水温和底泥温度)和气压显著相关,且随着温度升高、气压降低,CH4冒泡排放分别呈指数增加和线性增加趋势.本研究可为准确估算太湖流域CH4总排放量及明确我国湖泊对全球碳循环的贡献提供重要的基础数据.  相似文献   

14.
本文基于中国境内的湖泊、水库、河流等淡水系统CH4排放研究的相关成果,对203个湖泊(595个样点)、46个水库(221个样点)、112条河流(441个样点),总计1257个样点的CH4通量数据进行统计分析,探讨了中国淡水系统(湖泊、水库、河流)CH4排放的一般特征,总结了当前研究进展,并进一步估算和评估了中国淡水系统CH4排放总量水平.结果表明:1)中国湖泊CH4排放通量平均为(1.17±1.87) mg/(m2·h),蒙新湖区((3.84±0.57) mg/(m2·h))和东北湖区((2.62±3.54) mg/(m2·h))较高,青藏湖区((1.94±4.13) mg/(m2·h))次之,东部湖区((0.81±0.90) mg/(m2·h))较低,云贵湖区((0.19±0.26) mg/(m2·h))最低;湖泊CH4排放通量呈显著的纬度模式,高纬度地区湖泊CH4排放高于低纬度地区;2)水库CH4排放通量((1.25±1.78) mg/(m2·h))与湖泊相似,水库消落带较高的排放通量((4.34±4.45)mg/(m2·h))对水库CH4排放具有重要贡献;3)河流CH4排放((0.82±1.14) mg/(m2·h))略低于湖库,长江水系CH4排放通量((0.98±2.38) mg/(m2·h))和黄河水系((0.85±0.75) mg/(m2·h))相近,高于海河水系((0.54±0.93) mg/(m2·h)),辽河、珠江水系研究较少,数据变异性极大;4)受降水、温度、径流稀释等影响,淡水系统CH4排放呈显著的季节变化,其中湖库排放夏季高于秋季,冬春季较低,而河流则春秋季高于夏冬季;5)基于外推法估算全国湖泊、水库、河流CH4排放总量分别约为0.96,0.29,0.76Tg/a,相当于全国湿地系统排放的75%.由于较大的时空变异性以及监测数据分布的不均匀性,目前估算存在较大的不确定性,但淡水系统CH4排放在全球气候变化中的贡献仍不容小觑.  相似文献   

15.
于2017年12月~2018年1月现场测定了黄、渤海表层海水中二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)以及溶解甲烷(CH4)的含量,对DMS、DMSP及CH4的浓度分布和相互关系进行了研究.通过培养实验探究了DMSP降解对DMS和CH4生成的影响,并估算了DMS及CH4的海-气通量.结果表明,表层海水中DMS、DMSPd、DMSPp及CH4的平均浓度分别为(1.39±1.21),(2.87±1.54),(5.59±4.64),(6.91±2.77)nmol/L.DMS、DMSP与Chl-a水平分布基本一致,均呈现近岸高、远海低的趋势.垂直分布上,DMS、DMSP浓度最大值均出现在浅水层,而CH4浓度则随深度的增加而增大,至底层达到最大值.相关性分析表明,DMS、DMSPp与Chl-a存在显著的正相关关系,CH4与DMSPd、DMSPp浓度均存在一定的正相关性(P<0.05).培养实验结果表明,海水中本底DMSPd的浓度越高,DMS的生产速率越大.冬季黄、渤海DMS和CH4海-气通量的平均值分别为(2.73±3.18),(8.14±7.68)μmol/(m2·d),表明冬季黄、渤海是大气中DMS、CH4重要的源.  相似文献   

16.
为研究油田开发过程中原油在大气条件下的碳排放特征,完善油气系统潜在温室气体排放清单,以胜利油田典型区块——胜坨油田原油为研究对象,通过改进的静态室-气相色谱及质谱法对原油在大气条件下的自然脱气(排放)过程进行模拟试验研究. 结果表明:CH4和CO2是胜坨油田原油溶解气中的两种主要温室气体;将模拟时间(48 h)均分为4个时段,CH4、CO2的主要排放阶段为0~12 h,并且其排放量远高于>12~24、>24~36和>36~48 h,其中,不同温度下CH4、CO2的最大排放率均出现在0~2 h. 原油在空气中暴露时间的长短及所处大气温度的高低直接影响温室气体的累积排放,CH4、CO2的累积排放量均随模拟试验的进行而递增;原油所处环境温度越高,累积排放量越大,3 ℃时CH4、CO2的累积排放量分别为12.498、15.071 g/m3,13 ℃时为20.626、21.004 g/m3,27 ℃时为31.353、26.954 g/m3. CH4、CO2在不同温度下的相对排放量存在差异,表现为低温(3、13 ℃)条件下CH4排放量低于CO2,相对高温(27 ℃)条件下表现相反. 研究显示,原油所处大气环境的温度及暴露时间是影响原油温室气体排放的重要因素.   相似文献   

17.
选取竺山湾为研究区域,同时选取受人为活动影响较小的湖心区作为对比区域,基于2011年11月至2013年8月逐月连续观测,探讨外源输入及富营养化对CH4扩散通量的影响及其驱动机制,结果表明,竺山湾水-气界面CH4扩散通量显著(P<0.01)高于湖心区CH4扩散通量,其平均通量分别为(0.193±0.049)mmol/(m...  相似文献   

18.
上海城市河流温室气体排放特征及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究城区和郊区河流3种温室气体(N2O、CH4和CO2)排放通量的差异,分别于春季(2013年4月)、夏季(2013年7月)、秋季(2013年10月)和冬季(2014年1月),利用浮箱法和扩散模型法对上海市城区河流(苏州河)和郊区河流(淀浦河)的温室气体排放通量进行了观测;并探讨了人类活动干扰下环境因子对温室气体排放的影响. 结果表明:研究区内2条河流是温室气体的排放源,城区河流N2O和CH4的扩散排放通量和浮箱排放通量年均值均比郊区河流大1~2个量级, CO2两种排放通量在城郊区2条河流的年均值相当. 苏州河N2O、CO2和CH4扩散排放通量年均值分别为15.88、6 748.27和84.98 μmol/(m2·h);淀浦河分别为0.61、2 978.98和9.61 μmol/(m2·h). 苏州河N2O、CO2和CH4浮箱排放通量年均值为15.77、4 041.61和6 721.08 μmol/(m2·h);淀浦河为0.60、1 214.77和59.58 μmol/(m2·h). 城市河流呈现出高氮负荷及缺氧的特征,是影响中心城区河流N2O、CO2和CH4扩散排放通量偏高的重要因素. CH4浮箱排放通量和扩散排放通量的差异显示,城市河流中的富碳氮缺氧环境条件有利于随机气泡排放的发生,增强了温室气体的排放.   相似文献   

19.
盐度对河口湿地甲烷气体的产生与排放影响重大。为揭示海水入侵对河口湿地CH4排放的影响,利用静态密闭箱—气相色谱法在2016年4~10月期间对崇明东滩芦苇群落CH4气体的排放通量进行测定。结果表明:CH4排放总体表现出春夏季较高,秋冬季较低的季节变化规律;排放通量在0.19~7.68 mg/(m2·h)间波动,4~10月这半年内平均排放通量为3.41 mg/(m2·h)。在一定范围内,较高的盐度抑制CH4的产生与排放,较低的盐度不足以对CH4产生抑制作用,甚至会促进CH4的产生;在高盐环境下,CH4排放通量与盐度呈现出显著的对数负相关关系。在芦苇群落生长旺盛的初期(4~6月),CH4排放通量与温度、光照呈现正相关关系;而在芦苇生长后期(7~10月)则呈现负相关关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号