首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
王岚  张桂玲  孙明爽  任景玲 《环境科学》2014,35(12):4502-4510
分别于2012年3月和7月对长江口及其邻近海域进行了调查,对水体中溶解氧化亚氮(N2O)的分布及海-气交换通量进行了研究.结果表明,春季长江口及其邻近海域表层海水中溶解N2O浓度范围为9.34~49.08 nmol·L-1,平均值为(13.27±6.40)nmol·L-1.夏季表层溶解N2O浓度范围为7.27~27.81 nmol·L-1、平均值为(10.62±5.03)nmol·L-1.两航次表、底层海水中溶解N2O浓度相差不大.长江口溶解N2O浓度由近岸向外海逐渐降低,受陆源输入影响显著.溶解N2O浓度高值出现在长江口最大浑浊带附近,这主要是由于水体中较高的硝化速率造成的.温度是影响N2O分布的另一个重要因素,对溶解N2O浓度有双重作用.春季和夏季表层海水中N2O饱和度范围分别为86.9%~351.3%和111.7%~396.0%,平均值分别为(111.5±41.4)%和(155.9±68.4)%,大部分站位处于过饱和状态.利用LM86、W92和RC01公式分别计算了长江口及其邻近海域N2O的海-气交换通量,春季分别为(3.2±10.9)、(5.5±19.3)和(12.2±52.3)μmol·(m2·d)-1,夏季分别为(7.3±12.4)、(12.7±20.4)和(20.4±35.9)μmol·(m2·d)-1,初步估算出长江口及其邻近海域的年平均释放量分别为0.6×10-2Tg·a-1(LM86)、1.1×10-2Tg·a-1(W92)、2.0×10-2Tg·a-1(RC01).长江口及其邻近海域虽然只占全球海洋总面积的0.02%,但其释放的N2O占全球海洋释放量的0.06%,表明长江口及其邻近海域是产生和释放N2O的活跃区域.  相似文献   

2.
本文基于2022年5月现场调查,研究了北黄海辽东半岛东部邻近海域溶解甲烷(CH4)的分布、影响因素及海-气交换通量。结果表明,该海域溶解CH4浓度为3.2~11.2 nmol/L,饱和度为103%~364%,高值区位于鸭绿江口近岸海域,随着河口向海延伸,表层海水溶解CH4浓度逐渐减小,而底层海水溶解CH4浓度升高;鸭绿江冲淡水的输入致使近岸海域溶解CH4浓度显著升高,而沉积物有机质降解使得离岸海域底层海水溶解CH4浓度升高;该海域海-气CH4交换通量为0.7~61.1μmol/(m2·d),是大气CH4的源,近岸海域显著高于离岸海域。鸭绿江冲淡水的输入即使在平水期(5月)已经对邻近海域溶解CH4的影响非常显著,因此,河口等近岸海域海-气CH4交换通量的研究对于评估我国陆架边缘海对大气CH4的贡献至关重要。  相似文献   

3.
2011年2~3月利用化学发光法对胶州湾及邻近海域表层海水中一氧化氮(NO)浓度进行了监测.结合水文、化学和生物等要素的同步观测资料,对该海域NO浓度分布及其影响因素进行了探讨.结果表明,胶州湾内表层海水中NO浓度为0.080~0.493 nmol.L-1,平均值为(0.292±0.146)nmol.L-1,胶州湾外NO浓度为未检出~0.435 nmol.L-1,平均值为(0.160±0.130)nmol.L-1.总体来说,胶州湾表层海水中NO浓度呈现出自湾内向湾外递降的分布趋势,陆地径流和人为活动可能对NO浓度的分布造成一定程度的影响.胶州湾及邻近海域表层海水中NO浓度比开阔大洋高1个数量级.周日变化研究表明,NO浓度具有一定的变化特征,最大值出现在15:00,这可能主要受光照的影响.影响NO浓度分布的因素比较复杂,可能主要受亚硝酸盐、光强和pH等因素的影响.结果表明,2011年春季胶州湾及邻近海域表层海水是大气NO的源,通量约为1.09×10-15 mol.(cm2.s)-1.  相似文献   

4.
于2017年7—8月对中国长江口及其邻近海域表层及重要断面不同深度海水中二甲基硫(DMS)、二甲基巯基丙酸内盐(DMSP)和二甲亚砜(DMSO)的浓度进行了测定,探讨了长江冲淡水对其分布的影响,并估算了DMS的海-气通量.结果表明,表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)的浓度平均值分别为(5.69±5.20)、(6.67±4.90)、(19.46±9.26)、(24.67±20.52)和(24.97±20.85) nmol·L~(-1).DMS和DMSP大体呈现出一致的分布规律,高值区出现在冲淡水与海水的混合区域,在长江口口门附近出现低值.相关性分析结果表明,DMSPp与DMSOp存在相关性,这可能与二者有相似的来源和细胞功能有关.DMSPd、DMSOd均与DMS存在相关性,这是因为DMSPd降解是表层海水中DMS的主要来源,而DMS的光氧化和微生物氧化可能是夏季表层海水中DMSOd的重要来源途径.沉积物间隙水中DMSPd浓度高于底层海水,表明沉积物释放也是底层DMSPd的一个来源.此外,夏季长江口及邻近海域DMS的海-气通量介于0.29~34.63μmol·m~(-2)·d~(-1)之间,平均值为(8.37±11.79)μmol·m~(-2)·d~(-1).  相似文献   

5.
在春季开展了黄海与渤海表层海水和上方大气中CO的浓度分布、海-气通量和表层海水中CO的光化学生产的研究.用顶空分析法测得表层海水中CO的浓度([CO]surf)为(0.19~3.57)nmol.L-1,平均值为1.24 nmol.L-1(SD=0.79,n=69);总体来看,[CO]surf的分布呈现出近岸高、远海低的...  相似文献   

6.
通过2019年10月和12月对渤海海域进行的调查及样品采集,分析溶解N2O的分布和影响因素,并估算其海-气交换通量。结果表明:秋季表层海水溶解N2O浓度为(8.2±0.5)nmol/L,饱和度为(97.5±4.7)%;冬季浓度为(11.0±0.8)nmol/L,饱和度为(93.8±4.5)%。渤海表层海水溶解N2O浓度呈现明显的季节性差异,冬季浓度高于秋季,且高值区均集中在黄河口以及莱州湾附近。秋季渤海溶解N2O处于接近饱和状态,冬季则处于不饱和状态。温度、陆源淡水输入以及沉积物-水界面交换对渤海溶解N2O的分布有重要影响。2019年10月和12月黄河向渤海输入N2O的量分别约为4.2×104 mol和1.1×104 mol,是渤海N2O的重要来源,而秋、冬季渤海底层的沉积物既可能是渤海水体N2O的源,也可能是其汇。秋季和冬季渤海N2O海-气交换通...  相似文献   

7.
王敬  陆小兰  杨桂朋  徐冠球 《环境科学》2014,35(11):4085-4094
于2013年7月对东海和南黄海海水中CO的浓度分布、时空变化、海-气通量和表层海水中CO微生物消耗进行了研究.夏季东海和南黄海大气中CO的体积分数范围为68×10-9~448×10-9,平均值为117×10-9(SD=68×10-9,n=36),呈现出近岸高、远海低的特点.夏季东海和南黄海表层海水中CO的浓度范围为0.23~7.10 nmol·L-1,平均值为2.49 nmol·L-1(SD=2.11,n=36),CO的浓度受太阳辐射影响明显;不同站位CO浓度的垂直分布特征基本相同,CO浓度最大值一般出现在表层,随深度增加CO浓度迅速减小.夏季东海和南黄海海水中CO浓度具有明显的周日变化,最大值是最小值的6~40倍.各层最大值基本出现在中午,最小值基本上出现在凌晨前后.CO明显的周日变化特征进一步证明海水中CO主要由光化学产生.调查期间东海和南黄海表层海水中CO相比大气处于过饱和状态,过饱和系数变化范围为1.99~99.18,平均值为29.36(SD=24.42,n=29),表明调查海域是大气中CO的源.调查期间CO的海-气通量变化范围为0.37~44.84μmol·(m2·d)-1,平均值为12.73μmol·(m2·d)-1(SD=11.40,n=29).调查海域CO的微生物消耗培养实验中,CO的浓度随时间增长呈指数降低,消耗过程符合一级反应的特点,微生物消耗速率常数KCO范围为0.12~1.45 h-1,平均值为0.47 h-1(SD=0.55,n=5),微生物消耗速率与盐度之间有一定的相关性.  相似文献   

8.
利用吹扫捕集-气质联用方法测定了2014年5月黄海、渤海所取海水样品中异戊二烯的含量,探讨了其分布特征、海-气通量及影响因素.研究结果表明:春季黄海、渤海海域表层海水中异戊二烯的浓度范围为6.02~32.91pmol/L,(平均值±标准偏差)为(15.39±4.98)pmol/L,在黄海中部海域出现浓度高值;表层海水中异戊二烯与叶绿素a(Chl-a)浓度有一定的正相关性(R2=0.2529,n=49,P < 0.001),说明浮游植物生物量在异戊二烯生产和分布中发挥重要作用;春季黄海、渤海异戊二烯海-气通量的变化范围为0.78~192.43nmol/(m2·d),(平均值±标准偏差)为(24.08±30.11)nmol/(m2·d),表明我国陆架海区是大气异戊二烯重要的源.  相似文献   

9.
春季南海溶存N_2O的分布特征和海气交换通量   总被引:1,自引:0,他引:1  
2005年4月28日至5月11日在南海北部进行了调查,测定了南海不同深度海水中溶解N2O的浓度.结果表明,表层海水中的N2O浓度范围在5.17~14.9 nmol/L,饱和度范围为90.4%~236.3%,除个别站位外,表层水体中N2O均处于过饱和状态,是大气中N2O的净源.在研究海域陆架-陆坡站位和海盆区站位N2O的垂直分布有一共同特点:透光层海水中N2O垂直混合较为均匀.利用Liss和Merlivat公式(LM86)以及Wanninkhof公式(W92)分别计算了南海N2O海-气交换通量,结果为-0.57~32.93 μmol/m2·d和-1.1~53.51 μmol/m2*d,此外,我们还估算了南海对大气N2O的贡献为0.15~0.24 Tg/a,要远高于开阔大洋.  相似文献   

10.
为了探究陆架海域在全球海洋一氧化碳(CO)的生物地球化学循环中的地位,本文于2021年春季在中国东海对CO的浓度分布、海-气通量、暗反应生产和微生物消耗进行了研究。结果表明,东海大气中CO的体积分数为126.07×10-9~353.15×10-9,平均值为(191.32±51.52)×10-9,呈现明显的近岸高、远海低的特点。表层海水中CO的浓度为0.83~4.08 nmol/L,平均值为(2.07±0.84)nmol/L,最大值出现在舟山群岛附近,最小值出现在夜间采样站位,受太阳辐射强度和陆源输入有机物的影响较大。近岸海水中CO的垂直分布呈现表层浓度高、随深度增加浓度逐渐减小的趋势。表层海水中CO的过饱和系数为4.98~24.96,平均值为13.94±5.77。CO的日海-气通量为2.62~9.38μmol/(m2·d),平均值为(6.70±2.62)μmol/(m2·d)。在CO的暗反应生成培养实验中,CO浓度随时间增长呈现线性增加的趋势,生成速率为0.024~0.50 n...  相似文献   

11.
北黄海与渤海沉积物中磷形态的分布特征   总被引:7,自引:0,他引:7  
对1998年9月和1999年5月渤海航次和1999年8月北黄海航次所采集的柱状沉积物和表层沉积物样品进行了P形态的六步连续提取分析,分析了各种形态P在表层及垂直方向上的分布特征。并通过对沉积物充空气和N2条件下培养前后各步形态P的测定,认识各步形态P培养前后的变化以及不同的氧化还原环境对各步形态P的影响。结果表明:从渤海到并黄海总P的含量逐步降低。碎屑磷灰石的含量在六步中含量最高,约占50%左右,其次是非活性有机磷,约占20%,其他几步含量较小;充N2培养沉积物样品中碎屑磷灰石的含量要比充空气的低,其他形态的P较充空气培养的略高或相关不大。  相似文献   

12.
为深入研究我国近海异戊二烯的生物地球化学过程及气候效应,于2013年11月6—23日(秋季)在黄海、渤海海域设25个采样点采集海水样品,其中在A断面4个采样点采集不同深度海水样品,运用吹扫捕集-气质联用法对海水中c(异戊二烯)进行分析,研究其分布规律及影响因素,并对异戊二烯的海-气通量进行了探讨. 结果表明:①表层海水中c(异戊二烯)的范围为10.76~48.67 pmol/L,平均值为(22.85±10.52)pmol/L,其水平分布呈北高南低的特征;②c(异戊二烯)与ρ(Chla)(Chla为叶绿素a)呈正相关(R=0.643 4,n=25,P<0.000 4),说明浮游植物生物量是影响研究海域内c(异戊二烯)水平分布与变化规律的重要因素;③调查期间c(异戊二烯)在A断面上的垂直分布较为均匀且没有出现明显分层现象;④表层海水中异戊二烯处于过饱和状态,其海-气释放通量范围为6.26~449.81 nmol/(m2·d),平均值为(91.62±109.75)nmol/(m2·d). 研究显示,我国陆架海区可能是全球海洋、大气异戊二烯重要的源,相关的调查研究工作亟需展开.   相似文献   

13.
王鑫  张洪海  杨桂朋 《环境科学研究》2014,27(10):1119-1125
于2011年12月—2012年1月对我国东海、黄海表层及不同深度海水中c(DMSOd)(DMSOd为溶解态二甲亚砜)和c(DMSOp)(DMSOp为颗粒态二甲亚砜)的分布进行了研究,并探讨了其来源及影响因素. 结果表明:表层海水中c(DMSOd)和c(DMSOp)分别为(10.10±7.54)和(8.72±7.80) nmol/L,其水平分布明显受调查海域中浮游植物组成和丰度的影响;垂直分布上,c(DMSOd)和c(DMSOp)的最大值均出现在浅水层(3~20 m). 相关分析表明,c(DMSOd)与c(DMS)(DMS为二甲基硫)之间没有相关性,但与c(DMSOp)显著相关(R=0.442, n=41, P<0.006),说明冬季表层海水中DMSOd主要来源于浮游植物细胞内DMSO的释放,而不是DMS的氧化(光化学氧化和微生物氧化). 另外,c(DMSOp)/ρ(Chla)与盐度呈正相关(R=0.532, n=46, P<0.004),说明盐度的改变会影响浮游植物组成的变化,进而影响c(DMSOp).   相似文献   

14.
黄海和东海生源要素的化学海洋学   总被引:32,自引:1,他引:32  
根据东、黄海地区化学海洋学方面的调查结果,概述了东、黄海海区生源要素的时空分布和迁移转化特征,河流输入和大气沉降对东,黄海生源要素的贡献,以及沉积物与上覆海水的营养盐交换。  相似文献   

15.
春季黄渤海海水中尿素分布特征及溶解态氮的组成   总被引:3,自引:1,他引:2  
李志林  石晓勇  张传松 《环境科学》2015,36(11):3999-4004
2014年4~5月对黄渤海海域进行了一次大面现场调查,分别采用二乙酰一肟-盐酸氨基脲法和分光光度法测定了调查水样中尿素及各形态氮的浓度,分析了该海域尿素的浓度状况、分布特征以及溶解态氮的基本组成,并分析了该海域尿素的主要影响因素.结果表明,春季黄海渤海海域尿素的浓度范围是0.21~2.17μmol·L-1,平均浓度为(0.84±0.20)μmol·L-1.各调查海区中,北黄海海域尿素平均浓度最高,南黄海浓度最低.同时结果表明尿素是调查海域中溶解有机氮(DON)的重要组成部分,占DON的7.90%.在黄海海域尿素浓度由近岸到远海逐渐降低,高值区主要位于大连、青岛等人口密度较高且离岸较近城市的外海海域.渤海海域尿素浓度呈现由近岸到远海依次增加的趋势,说明河流输入不是渤海尿素的主要来源,同时也可能存在着河口附近泥沙对有机氮的吸附作用.  相似文献   

16.
黄、东海溶解态无机砷的形态及其分布   总被引:2,自引:0,他引:2  
利用氢化物发生原子荧光光谱法对2000年10月和2001年5月航次黄、东海的无机砷进行了测定.两个航次中黄、东海总溶解态无机砷(TDIA8)含量的变化范围分别为9.-21.和12.~23.nmoL,L,亚砷酸盐(As3 )含量的变化范围分别为0.2-2.4和0.1-9.2 nmoL/L,2000年秋季TDIAs和As3 的含量明显低于2001年春季.长江对黄、东海的影响非常显著,是主要的物质来源之一.黄海溶解态无机砷的平面分布表现为沿岸和东黄海交界处高,黄海中部冷水团区含量较低.东海自长江口向西南琉球群岛沿伸的PN断面中,TDIAs和As3 的分布存在明显的梯度,自长江口向中央海区递减,然后由于受到黑潮水入侵含量又开始升高.东海陆架区As3 的含量、分布受到浮游植物活动的影响,表现出与叶绿素含量存在相关关系.  相似文献   

17.
春季黄渤海溶解有机碳的平面分布特征   总被引:1,自引:0,他引:1  
依据2010年4~5月对黄渤海调查所得的数据,分析了黄渤海溶解有机碳(dissolved organic carbon,DOC)的含量及其平面分布特征,并对其影响因素进行了初步探讨.结果表明,2010年春季黄渤海DOC的浓度范围为0.96~4.71 mg.L-1,平均浓度为2.27 mg.L-1.平面分布上,DOC整体呈现南北近岸浓度高、中部外海浓度低的特点.在渤海西部近岸、山东半岛东部及长江口东北部均存在高值,尤其是渤海西部近岸,DOC浓度最高达到4.71 mg.L-1,这主要是受河流输入和沿岸流的影响;低值区则主要集中在南黄海中部外海,DOC浓度普遍低于1.50 mg.L-1.  相似文献   

18.
为探究海洋中一氧化碳(CO)的排放对全球碳循环的意义,于2019年冬季采用顶空法对黄海和东海CO的分布和海-气通量进行了研究.结果表明,调查海域大气中CO的体积分数为239×10-9~941×10-9,平均值为(588±155)×10-9.大气中CO体积分数最高值出现在北黄海近岸站位,最低值出现在东海南部,整体呈现黄海高、东海低的特点,且表现出明显的由近岸向外海降低趋势.表层海水CO浓度为0.39~2.80 nmol·L-1,平均值为(1.23±0.45) nmol·L-1.表层海水CO浓度高值区出现在东海东部,低值区出现在东海南部,受太阳光辐射和水团影响较大.CO的垂直分布上,浓度最大值一般出现在表层,随深度增加呈现逐渐降低的趋势.表层海水中过饱和系数α为0.99~8.67,平均值为2.61±1.42.CO海-气通量的变化范围为-0.05~41.38 nmol·m-2·h-1,平均值为(9.80±9.70) nmol·m-2·h-1.表层海水中CO浓度大多是过饱和的,表明冬季黄海和东海是其上方大气的源.这些数据对于估算全球碳排放具有重要作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号