首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 200 毫秒
1.
王敬  陆小兰  杨桂朋  徐冠球 《环境科学》2014,35(11):4085-4094
于2013年7月对东海和南黄海海水中CO的浓度分布、时空变化、海-气通量和表层海水中CO微生物消耗进行了研究.夏季东海和南黄海大气中CO的体积分数范围为68×10-9~448×10-9,平均值为117×10-9(SD=68×10-9,n=36),呈现出近岸高、远海低的特点.夏季东海和南黄海表层海水中CO的浓度范围为0.23~7.10 nmol·L-1,平均值为2.49 nmol·L-1(SD=2.11,n=36),CO的浓度受太阳辐射影响明显;不同站位CO浓度的垂直分布特征基本相同,CO浓度最大值一般出现在表层,随深度增加CO浓度迅速减小.夏季东海和南黄海海水中CO浓度具有明显的周日变化,最大值是最小值的6~40倍.各层最大值基本出现在中午,最小值基本上出现在凌晨前后.CO明显的周日变化特征进一步证明海水中CO主要由光化学产生.调查期间东海和南黄海表层海水中CO相比大气处于过饱和状态,过饱和系数变化范围为1.99~99.18,平均值为29.36(SD=24.42,n=29),表明调查海域是大气中CO的源.调查期间CO的海-气通量变化范围为0.37~44.84μmol·(m2·d)-1,平均值为12.73μmol·(m2·d)-1(SD=11.40,n=29).调查海域CO的微生物消耗培养实验中,CO的浓度随时间增长呈指数降低,消耗过程符合一级反应的特点,微生物消耗速率常数KCO范围为0.12~1.45 h-1,平均值为0.47 h-1(SD=0.55,n=5),微生物消耗速率与盐度之间有一定的相关性.  相似文献   

2.
2011年2~3月利用化学发光法对胶州湾及邻近海域表层海水中一氧化氮(NO)浓度进行了监测.结合水文、化学和生物等要素的同步观测资料,对该海域NO浓度分布及其影响因素进行了探讨.结果表明,胶州湾内表层海水中NO浓度为0.080~0.493 nmol.L-1,平均值为(0.292±0.146)nmol.L-1,胶州湾外NO浓度为未检出~0.435 nmol.L-1,平均值为(0.160±0.130)nmol.L-1.总体来说,胶州湾表层海水中NO浓度呈现出自湾内向湾外递降的分布趋势,陆地径流和人为活动可能对NO浓度的分布造成一定程度的影响.胶州湾及邻近海域表层海水中NO浓度比开阔大洋高1个数量级.周日变化研究表明,NO浓度具有一定的变化特征,最大值出现在15:00,这可能主要受光照的影响.影响NO浓度分布的因素比较复杂,可能主要受亚硝酸盐、光强和pH等因素的影响.结果表明,2011年春季胶州湾及邻近海域表层海水是大气NO的源,通量约为1.09×10-15 mol.(cm2.s)-1.  相似文献   

3.
夏季黄渤海表层海水中二甲亚砜(DMSO)的浓度分布   总被引:3,自引:1,他引:2  
根据2011年6月对黄渤海进行的大面调查,分析研究了夏季表层海水中颗粒态和溶解态二甲亚砜(DMSOp、DMSOd)的水平分布及其周日变化特征.海水中DMSO首先采用NaBH4将其还原为二甲基硫(DMS),再利用冷阱吹扫-捕集气相色谱法进行间接测定.结果表明,表层海水中DMSOp浓度的变化范围是5.43~18.35 nmol·L-1,平均值为(11.47±0.25)nmol·L-1;DMSOd浓度的变化范围是4.75~43.80 nmol·L-1,平均值为(13.42±0.58)nmol·L-1.相关性分析显示:DMSOp与叶绿素a(Chl-a)、温度、盐度等不存在相关性,而DMSOp/Chl-a比值与盐度存在一定的正相关,表明DMSO在藻细胞内具有渗透压调节功能;DMSOd与细菌、DMSOp浓度不存在相关性,而与DMS浓度存在一定的正相关,表明表层海水中DMSOd的主要来源是DMS的光化学氧化.另外,DMSOp与DMSOd均呈现出明显的周日变化规律,白天时段浓度明显高于夜间时段.  相似文献   

4.
利用吹扫捕集-气质联用方法测定了2014年5月黄海、渤海所取海水样品中异戊二烯的含量,探讨了其分布特征、海-气通量及影响因素.研究结果表明:春季黄海、渤海海域表层海水中异戊二烯的浓度范围为6.02~32.91pmol/L,(平均值±标准偏差)为(15.39±4.98)pmol/L,在黄海中部海域出现浓度高值;表层海水中异戊二烯与叶绿素a(Chl-a)浓度有一定的正相关性(R2=0.2529,n=49,P < 0.001),说明浮游植物生物量在异戊二烯生产和分布中发挥重要作用;春季黄海、渤海异戊二烯海-气通量的变化范围为0.78~192.43nmol/(m2·d),(平均值±标准偏差)为(24.08±30.11)nmol/(m2·d),表明我国陆架海区是大气异戊二烯重要的源.  相似文献   

5.
春季厦门海域表层海水中二甲基硫的含量分布   总被引:3,自引:0,他引:3  
采用固相微萃取(SPME) 气相色谱法(GC)测定了厦门海域20个站位表层海水中DMS二甲基硫的含量,并对其分布进行分析。结果表明,厦门海域DMS含量在0 65~40 69nmol·L-1,平均浓度为12 83nmol·L-1。其中,西海域的含量最高,东海域次之,同安湾最低。与其它海域海水中DMS浓度比较,厦门海域DMS含量较高,浓度变化范围大,与叶绿素a浓度及表层水温、盐度之间无明显的相关关系。  相似文献   

6.
春季东、黄海溶解甲烷的分布和海气交换通量   总被引:2,自引:1,他引:1  
于2011年3月17日~4月6日对东、黄海海域进行了大面调查,采集了45个站位不同深度的海水样品,对溶解甲烷(CH4)浓度进行了测定,并估算了其海-气交换通量.结果表明,东、黄海表层海水中溶解甲烷的浓度变化范围是2.39~29.67nmol.L-1,底层海水中甲烷浓度范围是2.63~30.63 nmol.L-1,底层浓度略高于表层,表明底层水体或沉积物中存在甲烷的源.春季东、黄海海域表、底层溶解甲烷的分布特征基本一致,即从近岸向远海逐渐降低,主要受长江冲淡水输入和黑潮水入侵的影响.春季东、黄海海域表层海水中CH4饱和度为93%~1 038%.利用Liss and Merlivat公式(LM86)、Wanninkhof公式(W92)和现场测定的风速估算出春季东、黄海海域CH4的海-气交换通量分别为(2.85±5.11)μmol.(m2.d)-1和(5.18±9.99)μmol.(m2.d)-1,根据本研究结果和文献数据初步估算出东海和黄海年释放甲烷量分别为7.05×10-2~12.0×10-2Tg.a-1和1.17×10-2~2.20×10-2Tg.a-1.春季东、黄海海域表层海水中CH4均呈过饱和状态,是大气中CH4的净源.  相似文献   

7.
为了探究陆架海域在全球海洋一氧化碳(CO)的生物地球化学循环中的地位,本文于2021年春季在中国东海对CO的浓度分布、海-气通量、暗反应生产和微生物消耗进行了研究。结果表明,东海大气中CO的体积分数为126.07×10-9~353.15×10-9,平均值为(191.32±51.52)×10-9,呈现明显的近岸高、远海低的特点。表层海水中CO的浓度为0.83~4.08 nmol/L,平均值为(2.07±0.84)nmol/L,最大值出现在舟山群岛附近,最小值出现在夜间采样站位,受太阳辐射强度和陆源输入有机物的影响较大。近岸海水中CO的垂直分布呈现表层浓度高、随深度增加浓度逐渐减小的趋势。表层海水中CO的过饱和系数为4.98~24.96,平均值为13.94±5.77。CO的日海-气通量为2.62~9.38μmol/(m2·d),平均值为(6.70±2.62)μmol/(m2·d)。在CO的暗反应生成培养实验中,CO浓度随时间增长呈现线性增加的趋势,生成速率为0.024~0.50 n...  相似文献   

8.
为探究海洋中一氧化碳(CO)的排放对全球碳循环的意义,于2019年冬季采用顶空法对黄海和东海CO的分布和海-气通量进行了研究.结果表明,调查海域大气中CO的体积分数为239×10-9~941×10-9,平均值为(588±155)×10-9.大气中CO体积分数最高值出现在北黄海近岸站位,最低值出现在东海南部,整体呈现黄海高、东海低的特点,且表现出明显的由近岸向外海降低趋势.表层海水CO浓度为0.39~2.80 nmol·L-1,平均值为(1.23±0.45) nmol·L-1.表层海水CO浓度高值区出现在东海东部,低值区出现在东海南部,受太阳光辐射和水团影响较大.CO的垂直分布上,浓度最大值一般出现在表层,随深度增加呈现逐渐降低的趋势.表层海水中过饱和系数α为0.99~8.67,平均值为2.61±1.42.CO海-气通量的变化范围为-0.05~41.38 nmol·m-2·h-1,平均值为(9.80±9.70) nmol·m-2·h-1.表层海水中CO浓度大多是过饱和的,表明冬季黄海和东海是其上方大气的源.这些数据对于估算全球碳排放具有重要作用.  相似文献   

9.
于2012年10月对中国东海表层海水中二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP)、溶解自由态蛋氨酸(DF Met)的浓度分布及影响因素进行了研究。分析结果表明,秋季东海表层海水中硅酸盐(SiO3-Si)、溶解无机氮(DIN)、磷酸盐(PO4-P)浓度变化范围分别为0.11~1.76、0.08~0.56和0.013~0.054 mg/L,平均值为0.50±0.36、0.19±0.11和0.024±0.0098 mg/L,且东海西南部上升流区出现营养盐浓度的高值区。表层海水中DMS、DMSP和DF Met的浓度分别在0.47~6.46、9.44~55.57和3.48~14.42 nmol/L之间,平均值分别为3.10±1.93、28.05±14.17和6.19±2.30 nmol/L。DMS、DMSP的水平分布与叶绿素a(Chl a)分布基本一致,呈现出近岸向远海降低的趋势。所调查海域的DMS/Chl a和DMSP/Chl a比值变化范围分别为2.59~27.66和27.37~103.34 mmol/g,平均值分别为11.46±5.02和65.08±23.41 mmol/g,与该海域硅藻为浮游植物优势种的调查结果相一致。此外,秋季东海表层海水DMS的海-气通量介于0.89~105.50 μmol/(m2·d)之间,平均值为35.65 ±31.53 μmol/(m2·d)。  相似文献   

10.
王岚  张桂玲  孙明爽  任景玲 《环境科学》2014,35(12):4502-4510
分别于2012年3月和7月对长江口及其邻近海域进行了调查,对水体中溶解氧化亚氮(N2O)的分布及海-气交换通量进行了研究.结果表明,春季长江口及其邻近海域表层海水中溶解N2O浓度范围为9.34~49.08 nmol·L-1,平均值为(13.27±6.40)nmol·L-1.夏季表层溶解N2O浓度范围为7.27~27.81 nmol·L-1、平均值为(10.62±5.03)nmol·L-1.两航次表、底层海水中溶解N2O浓度相差不大.长江口溶解N2O浓度由近岸向外海逐渐降低,受陆源输入影响显著.溶解N2O浓度高值出现在长江口最大浑浊带附近,这主要是由于水体中较高的硝化速率造成的.温度是影响N2O分布的另一个重要因素,对溶解N2O浓度有双重作用.春季和夏季表层海水中N2O饱和度范围分别为86.9%~351.3%和111.7%~396.0%,平均值分别为(111.5±41.4)%和(155.9±68.4)%,大部分站位处于过饱和状态.利用LM86、W92和RC01公式分别计算了长江口及其邻近海域N2O的海-气交换通量,春季分别为(3.2±10.9)、(5.5±19.3)和(12.2±52.3)μmol·(m2·d)-1,夏季分别为(7.3±12.4)、(12.7±20.4)和(20.4±35.9)μmol·(m2·d)-1,初步估算出长江口及其邻近海域的年平均释放量分别为0.6×10-2Tg·a-1(LM86)、1.1×10-2Tg·a-1(W92)、2.0×10-2Tg·a-1(RC01).长江口及其邻近海域虽然只占全球海洋总面积的0.02%,但其释放的N2O占全球海洋释放量的0.06%,表明长江口及其邻近海域是产生和释放N2O的活跃区域.  相似文献   

11.
Distributions of dimethylsulfide in the Bohai sea and Yellow Sea of China   总被引:2,自引:0,他引:2  
IntroductionDimethylsulfide(CH3SCH3,DMS)isbelievedasthemostimportantvolatilesulfurcompoundreleasedfromtheseawater(Turner,1 988;Andreae ,1 990 ) .ThelatestestimationofDMSfluxfromtheoceantotheatmosphereis 2 0 7± 5 2Tg a ,accountingfor 85%ofglobalDMSsources(Watts,2 0 0 0 ) .AtmosphericDMSisinitiallyoxidizedbyOHinthedaytimeandnitrateradical(NO3)atnightasmajorsinksofDMSintheatmosphere(Andreae ,1 986;Yin ,1 990a ;Barnes ,1 996) .TheoxidationofatmosphericDMSseemstocontributelargelytot…  相似文献   

12.
2013年秋末黄渤海海水中胞外酶活性水平和垂直变化   总被引:1,自引:0,他引:1  
于2013年11月6~23日对黄渤海进行了现场调查研究,对42个大面站以及A7、E7两个垂直站位进行了采样及环境参数的测定,研究了该海域海水中的9种胞外酶活性的水平及垂直变化.结果表明:秋末黄渤海表层海水中,9种胞外酶的平均活性由高到低排列为碱性磷酸酶[77.31nmol/(L·h)]>脂肪酶[23.59nmol/(L·h)]>β-D-葡萄糖苷酶[3.87nmol/(L·h)]>木糖苷酶[2.63nmol/(L·h)]>α-D-葡萄糖苷酶[1.58nmol/(L·h)]≈纤维素酶[1.47nmol/(L·h)]≈几丁质酶[1.29nmol/(L·h)]>肽酶[1.09nmol/(L·h)]>β-D-半乳糖苷酶[0.74nmol/(L·h)];表层海水9种胞外酶的活性大都呈现出黄海大于渤海,即南高北低的变化规律;表层海水中的β-D-葡萄糖苷酶活性和纤维素酶活性与温度呈现弱的正相关(P0.05);A7和E7两个站位的胞外酶活性的垂直分布显示不同胞外酶的活性在不同水深有明显的差异,基本表现为表层、10m和30m的活性高于50m、75m和底层的活性.  相似文献   

13.
春季黄渤海溶解有机碳的平面分布特征   总被引:1,自引:0,他引:1  
依据2010年4~5月对黄渤海调查所得的数据,分析了黄渤海溶解有机碳(dissolved organic carbon,DOC)的含量及其平面分布特征,并对其影响因素进行了初步探讨.结果表明,2010年春季黄渤海DOC的浓度范围为0.96~4.71 mg.L-1,平均浓度为2.27 mg.L-1.平面分布上,DOC整体呈现南北近岸浓度高、中部外海浓度低的特点.在渤海西部近岸、山东半岛东部及长江口东北部均存在高值,尤其是渤海西部近岸,DOC浓度最高达到4.71 mg.L-1,这主要是受河流输入和沿岸流的影响;低值区则主要集中在南黄海中部外海,DOC浓度普遍低于1.50 mg.L-1.  相似文献   

14.
于2017年12月~2018年1月现场测定了黄、渤海表层海水中二甲基硫(DMS)、二甲巯基丙酸内盐(DMSP)以及溶解甲烷(CH4)的含量,对DMS、DMSP及CH4的浓度分布和相互关系进行了研究.通过培养实验探究了DMSP降解对DMS和CH4生成的影响,并估算了DMS及CH4的海-气通量.结果表明,表层海水中DMS、DMSPd、DMSPp及CH4的平均浓度分别为(1.39±1.21),(2.87±1.54),(5.59±4.64),(6.91±2.77)nmol/L.DMS、DMSP与Chl-a水平分布基本一致,均呈现近岸高、远海低的趋势.垂直分布上,DMS、DMSP浓度最大值均出现在浅水层,而CH4浓度则随深度的增加而增大,至底层达到最大值.相关性分析表明,DMS、DMSPp与Chl-a存在显著的正相关关系,CH4与DMSPd、DMSPp浓度均存在一定的正相关性(P<0.05).培养实验结果表明,海水中本底DMSPd的浓度越高,DMS的生产速率越大.冬季黄、渤海DMS和CH4海-气通量的平均值分别为(2.73±3.18),(8.14±7.68)μmol/(m2·d),表明冬季黄、渤海是大气中DMS、CH4重要的源.  相似文献   

15.
黄海硅的分布与收支研究   总被引:2,自引:0,他引:2  
基于2012年在黄海的综合调查,对黄海水体和沉积物中溶解硅和生物硅的含量和分布及主要影响因素进行了分析,并结合历史数据建立了黄海硅收支与循环的模型.结果表明,黄海水体溶解硅和生物硅在秋季均高于春季,生物硅占活性硅的22%,陆源输入、初级生产和底界面扩散对硅的含量和分布的影响较为突出.收支表明,底界面扩散是黄海水体溶解硅的主要来源,占外部输入的48%,其次是东海的输入,占32%,河流贡献为9%,地下水贡献为6%,地表径流(非河流部分)贡献为3%,渤海贡献为1.5%,大气仅贡献0.5%;黄海水体溶解硅的支出主要是通过生物的吸收与随后的沉积埋藏和向东海的输出,其比例分别为72%和27%,黄海向渤海输出比例仅为1.0%;黄海沉积物是水体溶解硅的源,同时黄海体系还具有潜在汇的特性;黄海硅的净埋藏量约为55×109mol/a,占当年生物硅总量的7.2%,高于全球海洋的平均比值(3%),是外部输入硅总量的47%.本研究量化了黄海硅循环的主要过程,初步揭示了硅的源-汇特征以及陆地输入对近海硅收支与循环的影响.  相似文献   

16.
基于在黄渤海的综合调查结果,分析了水体和沉积物间隙水中溶解无机氮(DIN)和溶解无机磷(DIP)的分布;结合历史数据构建了黄渤海DIN和DIP的收支模型,并分析了陆源输入变化对研究区域生态环境的影响.结果表明,黄渤海DIN和DIP的含量受季节、河流输入和沉积物界面扩散作用的影响,具有秋季高于春季和近岸高于离岸的时空分布特征.收支模型计算结果表明,底界面扩散是黄渤海水体DIN的主要来源,其次是大气、周边河流、地下水和东海的输入;黄渤海水体DIN的支出主要是通过沉积埋藏和反硝化.黄渤海水体DIP的来源主要是磷酸盐吸附解吸,占91%,底界面扩散和大气输入为其次,河流和地下水的输入贡献较小.DIP的支出主要是通过沉积埋藏和向东海的输出.黄渤海每年有11Gmol的氮在水体积累,并导致其浓度提高约0.6μmol/(L·a).近些年来陆地向黄渤海输入氮的持续增加,加剧了氮营养盐的积累,导致非硅藻类浮游植物比例以及赤潮发生频率和面积显著增加,同时还提高了水体初级生产力和海洋磷的埋藏量以及加剧了磷限制的趋势,并可能威胁生态系统的稳定.  相似文献   

17.
分别运用吹扫捕集和三级低温预浓缩系统与气-质联用的方法,测定了2014年11月黄渤海表层海水和大气中主要的C2~C5非甲烷烃(NMHCs)的浓度,研究其分布特征及海-气通量,并评价了它们的大气化学反应活性.海水中乙烷、丙烷、异丁烷、正丁烷、乙烯、丙烯、1-丁烯、异丁烯和异戊二烯的浓度平均值分别为53.0,49.4,26.4,29.2,186,62.7,35.6,89.9,42.4pmol/L.大气中乙烷、丙烷、异丁烷、正丁烷、乙烯、丙烯、1-丁烯、异丁烯和异戊二烯的体积分数平均值分别为0.043,21,0.36,6.7,7.5,0.71,0.12,0.16,0.085×10-9.大气中乙烷、丙烷、异丁烷、正丁烷、乙烯、丙烯、1-丁烯和异丁烯具有较好的相关性,均与异戊二烯没有相关性.海-气通量的计算结果表明,近岸陆架海域可能是大气中C2~C5NMHCs重要的源.通过计算C2~C5NMHCs的臭氧生成潜势和OH·消耗速率,表明乙烯、丙烯、丙烷和正丁烷是黄渤海大气C2~C5NMHCs的关键活性组分.  相似文献   

18.
黄渤海海域秋季营养盐及有色溶解有机物分布特征   总被引:1,自引:0,他引:1  
唐永  孙语嫣  石晓勇  韩秀荣  苏荣国 《环境科学》2017,38(11):4501-4512
本文利用2013年11月黄渤海海域航次采集的海水样品,对该海域有色溶解有机物(CDOM)、营养盐等的组成、来源、分布特征和主要环境影响因子进行了分析研究.通过三维荧光光谱-平行因子分析法(EEMs-PARAFAC)对CDOM进行分析,共鉴别出2类4种荧光组分:类腐殖质组分C1(325/410 nm)、C2(275,370/435 nm)、C3(270,395/495 nm)和类蛋白质组分C4(290/340 nm).3种类腐殖质组分在黄渤海海域各层的平面分布均为由近岸向远岸逐渐递减.黄海表层和渤海中层类蛋白质组分荧光强度在近岸和远岸海域均出现极大值,而其在渤海表底层及黄海中底层的分布呈现由近岸到远岸逐渐降低的趋势.各层CDOM高值区主要分布在近岸海域.渤海表层溶解无机氮(DIN)和溶解有机氮(DON)浓度高于底层浓度,底层溶解无机磷(DIP)浓度高于表层浓度.渤海DIN呈现由近岸到远岸逐渐降低的趋势,DIP由曹妃甸近岸海域及中部海域的高值区向北部、东部和南部海域逐渐降低的趋势,DON则呈现由渤海中部偏南海域的高值区向四周逐渐递减的趋势.黄海底层DIN和DIP浓度高于表层,而表层DON浓度最高.黄海表中层DIN和DIP呈现由近岸到远岸逐渐降低的趋势,底层DIN和DIP则呈现由近岸到远岸逐渐增加的趋势,DON呈现由近岸到远岸逐渐降低的趋势.渤海DIN、DON和DIP的总体浓度均高于黄海.将4种荧光组分(C1~C4)、吸收系数(a_(355))、溶解有机碳(DOC)与叶绿素a(Chl-a)、盐度(S)、溶解氧(DO)、DIN、DON、DIP进行冗余分析,结果表明黄渤海各荧光组分(C1~C4)主要受陆源输入的影响,DOC受陆源与海源的共同影响,但陆源影响较大.渤海DIN受陆源输入的影响较大,而DON受海源影响较大;黄海DIN受陆源和海源共同影响,而DON主要受陆源输入影响.黄渤海DIP均受陆源和海源共同影响.  相似文献   

19.
微塑料作为一种新型污染物,对环境、海洋生物、人体健康等均会产生潜在危害,因而引起国内外学者的广泛关注。本文基于公开发表的文献资料,剖析东中国海表层海水微塑料的丰度分布以及粒径、颜色、形状、种类组成特征,总结东中国海微塑料污染概况,进而分析微塑料可能的来源。研究表明,东中国海表层海水微塑料丰度整体变化幅度小,沿岸局部及河口附近海域丰度高。其中,渤海表层海水微塑料分布较为均匀,渤海海峡以及靠近陆地处略高;黄海局部(青岛近岸、桑沟湾海域)丰度较高,其余海域丰度与渤海相近,南部略高于北部;东海沿岸河口附近丰度明显升高,从沿岸向海呈降低趋势。渤海表层海水微塑料粒径组成以小于1 mm为主;黄海以小于0.5 mm为主;东海以0.5~1 mm和1~5 mm为主。东中国海各地表层海水微塑料的颜色组成差异大,形状组成以纤维状为主,种类组成以聚乙烯和聚丙烯为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号