首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为打破传统厌氧发酵周期长,有机质利用率低等瓶颈,增强污泥的资源利用和能源回收,探讨了游离亚硝酸(FNA)预处理对剩余污泥电解效果及微生物群落的影响.对比分析了FNA预处理前后剩余污泥在微生物电解池(MEC)中的电流和氢气产生、溶解性有机物和挥发酸的释放和利用及功能菌群的变化情况.结果表明,FNA预处理能有效地促进剩余污泥在MEC系统中的水解和酸化,其溶解性糖类、蛋白和挥发酸的含量远高于未预处理组,进而促进了水解发酵菌、产电菌及反硝化菌的生长和富集,最终挥发酸利用率均在97%以上,表现为电流(1.9mA)和氢气(0.86mL/g VSS)的增强,分别是空白组的3.8倍和5.1倍.  相似文献   

2.
对比考察了二价铁(Fe2+)、零价铁(ZVI)、超声波(US)3种活化方式对过硫酸盐(S2O82-)预处理剩余污泥的溶胞性能,并研究其对污泥厌氧发酵产酸进程的促进效能.结果表明,相对比未预处理污泥,S2O82-能够明显促进剩余污泥溶胞和发酵产酸进程;同时,活化后的S2O82-预处理效果明显优于未活化预处理实验组,其中S2O82-+Fe2+预处理体系的促进作用最为明显.Fe2+、ZVI和US活化S2O82-的3组溶胞率分别为42.6%、36.5%和32.9%,相比未活化实验组(22.3%)提高了10.6%~20.3%;3组活化体系最大挥发酸浓度分别为8052,6613,4996mg COD/L,而未活化组仅为3296mg COD/L.此外,不同方式活化S2O82-预处理对溶解性有机物溶出及挥发酸组分分布也有一定影响.从环境和经济角度来看,S2O82-+Fe2+体系对促进污泥发酵进程具有更大意义.  相似文献   

3.
鉴于污泥厌氧发酵产酸技术的生产规模性研究较少,为深入了解城镇剩余污泥厌氧发酵产挥发性脂肪酸(VFAs)工程的长期运行特征,基于0.3 t/d规模的生产线平台进行了为期240 d的稳定运行研究,考察了长期运行条件下的污泥预处理效果、产酸水平、VFAs回收和经济可行性.结果表明:污泥经热-混碱预处理后溶解性有机物浓度〔ρ(SCOD),以溶解性COD计〕比原污泥提高了29倍,水解率达到56%.当ρ(TSS)(TSS为总悬浮固体)分别为30和70 g/L时,污泥预处理水解率分别为56%和59%;厌氧发酵产酸率〔以每g污泥有机物生产多少mg VFAs计,RVFAs〕分别为277和256 mg/g;ρ(TVFAs)(TVFAs为总挥发性脂肪酸)最高可达9.1 g/L,其中乙酸占61.6%.采用聚合氯化铝(PAC)和聚丙烯酰胺(PAM)联合调理能够有效提高发酵污泥的脱水性能,与对照组相比,泥饼的含水率由84.8%降至64.0%,发酵液的回收率由33.7%升至75.7%.经济效益分析表明,设置处理规模为100 t/d时,运行成本为346.6元/t,收益为451.4元/t.研究显示,城镇污水厂剩余污泥厌氧发酵产酸生产线运行稳定,能够实现较好的有机物生物转化与资源化效果,经济可行,具有显著的应用前景.   相似文献   

4.
为了探究鼠李糖脂以及低温热水解预处理污泥厌氧发酵过程对污泥脱水性能的改变,利用毛细吸水时间(CST)表征脱水性能指标,有机物溶出、粒径分布以及三维荧光光谱分析阐明脱水性能变化机制.研究发现在厌氧发酵之前,预处理后污泥脱水性能均会降低;厌氧发酵之后原污泥脱水性能降低,经过热水解的污泥脱水性能改善;粒径分布变化表明粒径减小是预处理污泥脱水性能变差的部分原因,发酵之后粒径增大对于污泥脱水性能改善不明显.溶解性有机物(SCOD)、溶解性碳水化合物(SC)以及溶解性蛋白质(SP)的溶出情况发现粒径的减小是由于预处理手段对污泥的有效破解.三维荧光平行因子分析(PARAFAC)表明,污泥预处理且厌氧发酵前后溶解性有机质(DOM)均包含类腐殖酸C1(386nm/462nm)和C3(342nm/438nm)、酪氨酸类蛋白C2(278nm/306nm)以及色氨酸类蛋白C4(290nm/358nm).其中,类腐殖酸的增多是热水解污泥脱水性能变差的主要原因,厌氧发酵之后酪氨酸蛋白的积累是原污泥脱水性能变差的原因,类腐殖酸的分解是热水解污泥发酵后改善的原因.  相似文献   

5.
研究了两种廉价的常用填料聚乙烯(PE)和页岩陶粒(SC)对污泥厌氧发酵产酸的影响.结果表明,PE和SC的加入促进了污泥颗粒的分解和溶胞,总短链脂肪酸(TSCFAs)的浓度分别是对照组的1.2和1.1倍.PE和SC组挥发性固体(VS)的降解率(29.7%和29.1%)高于对照组(24.9%),这是造成两组高SCFAs浓度维持较长时间的主要原因.高通量测序结果表明,PE和SC的加入使合成SCFAs的变形菌门(Proteobacteria)的相对丰度增加,而利用SCFAs的厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidetes)的相对丰度则减少,说明合适的填料促进SCFAs产生的方式可能与产酸微生物种类的富集有关.  相似文献   

6.
为了优化最适宜的预处理条件,探究了不同高铁酸钾(PF)亚硫酸钠(Na2SO3)投加量对污泥EPS剥离和有机物转化短链脂肪酸(SCFAs)的贡献情况.结果表明,Fe(VI)/S(IV)联合预处理对污泥结构,尤其是紧密附着层EPS有较强的分解作用.当PF/Na2SO3的物质的量比从0/1(单独Na2SO3组)增加至2/3时,SCFAs的最高产量由1169.5mg COD/L增加到4796.9mg COD/L(第4d),是单独Na2SO3和PF实验组的4.5和1.6倍.同时,当PF/Na2SO3物质的量比为2/3时,溶解性糖类和蛋白质释放量达到最大值,分别为260.1和2212.2mg COD/L.因此,适宜剩余污泥发酵产酸的最佳PF/Na2SO3物质的量比为2:3.基于本研究结果,结合传统厌氧发酵各个阶段,阐明了Fe(VI)/S(IV)强化污泥产酸的机理,为采用基于SO4·-的高级氧化方法强化污泥发酵产酸技术的应用提供了理论基础.  相似文献   

7.
预处理污泥厌氧发酵不仅可有效处理污泥,而且可产生挥发性脂肪酸(VFAs),实现污泥资源化利用。通过批式试验,探究酸(pH为3、4)、碱(pH为10、11)和低温(70,90 ℃)预处理条件下污泥厌氧发酵产酸效能。研究发现,在不同预处理污泥厌氧发酵过程中,VFAs的积累主要发生在发酵前24h,产酸效果表现为pH=11 > 90 ℃ > pH=10 > 70 ℃ > pH=3 > pH=4 > 控制组,碱处理产酸有较明显优势,酸处理效果最差。乙酸为VFAs的主要成分,pH=11组的乙酸浓度最高达到1232.31 mg/L,为控制组的5.2倍。甲烷产量在厌氧发酵后期逐步上升。考虑到嗜酸产甲烷菌对VFAs的消耗以及经济性,选取24 h为最佳发酵时间。  相似文献   

8.
利用蒸汽爆破技术对城市污泥进行预处理,研究了不同压力和保压时间结合条件下蒸汽爆破对污泥理化性质和后续厌氧发酵产酸的影响.结果表明,经蒸汽爆破预处理后,部分污泥絮体结构被破坏,污泥液相中SCOD、蛋白质、多糖和DNA浓度分别达到最高的9544mg/L、596.7mg/L,1515mg/L,9.1ng/μL(2MPa,4min),相比于对照组污泥分别提高37.7、19.4、12.5和3.64倍,同时能提高污泥可生化性;蒸汽爆破能有效减小污泥颗粒体积,相比对照组污泥平均体积粒径最高降低52.59%;蒸汽爆破后污泥经过厌氧发酵,产酸量分别达到最高的7.34g/L(1MPa,3min)、7.12g/L(1.5MPa,1min)、8.15g/L(2MPa,4min),相比于对照组污泥分别提高了1.55、1.51和1.72倍,最高产酸率为234.76mg COD/g VSS.进一步提高预处理强度能够改善污泥溶解性和发酵产酸性能.  相似文献   

9.
为充分利用剩余污泥(WAS)中有机物,探究经游离亚硝酸(FNA)预处理后的WAS作为反硝化碳源的可行性。采用不同浓度的FNA(0~2.11 mg/L)对WAS进行预处理,考查WAS中细胞破解、有机物溶出及WAS发酵同步反硝化性能的影响。结果表明,随着FNA浓度的增加,系统中总有机碳(TOC)、可溶性蛋白(PN)和可溶性多糖(PS)浓度分别提高98.80%、220.46%和93.63%,溶解型胞外聚合物(S-EPS)和疏松结合型胞外聚合物(LB-EPS)中 PN 和 PS 浓度均有大幅增加。经 FNA=2.11 mg/L 预处理 60 h 后,VSS 和挥发分比(f)分别降低19.09%和8.84%,污泥累积粒径分布D_(10)、D_(50)和D_(90)分别下降25.61%、33.80%和38.31%,细胞由紧凑型向松散型转变。同时,FNA预处理可使WAS同步反硝化系统NO_2--N去除率提高59.13%。因此,FNA预处理能够有效破坏EPS和细胞壁,加速WAS有机物溶出,且易被反硝化过程利用,系统同步反硝化性能显著提高。  相似文献   

10.
电化学预处理剩余污泥(waste activated sludge, WAS)厌氧发酵(anaerobic fermentation, AF)产挥发性脂肪酸(volatile fatty acids, VFAs)具有良好的应用价值和环境效益,然而不同电解质对电化学预处理剩余污泥以及厌氧发酵的效果具有较大影响。因此,实验考查了不同电解质(空白对照,NaCl,Na2SO4和CaCl2)在电流强度为1 A、预处理时间为60 min的电化学处理条件下,对剩余污泥厌氧发酵产VFAs的影响。结果表明:当0.05 mol/L NaCl作为电解质时,在电化学预处理阶段污泥有机质(溶解性COD、多糖、蛋白质等)溶出效果较其他电解质更好。在厌氧发酵阶段,该条件下VFAs最大累积量可达到2625.8 mg COD/L,相比空白对照组提升了51.6%,表明NaCl作为电解质的电化学预处理不仅能够有效促进剩余污泥中有机质溶出,而且有利于产酸微生物(如Firmicutes和Bacteroidetes)的富集,从而促进厌氧发酵产VFAs,达到提高污泥资源化利用率的目的。  相似文献   

11.
为了研究不同发酵方式对剩余污泥厌氧发酵性能影响及微生物对其发酵液的利用情况,将剩余污泥分别在Ca(OH)2(pH=10±0.2),Ca(OH)2+NaCl(pH=10±0.2),游离亚硝酸盐(FNA) (pH=5.5±0.2),单过硫酸氢钾复合盐(PMS),十二烷基苯磺酸钠(SDBS)及自然条件下进行发酵,发酵后期将发酵液用于生物脱氮研究,分别对发酵系统内的剩余污泥溶液化(SCOD)、溶解性蛋白质、溶解性多糖、可挥发性短链脂肪酸(SCFAs)和关键酶(水解酶和辅酶420)、NO3--N等指标进行分析.结果表明,6个发酵系统中,剩余污泥的水解酸化性能及发酵液利用具有显著的差别,其中Ca(OH)2+NaCl 发酵系统中SCOD、SCFAs、水解酶、污泥减量效果等最佳,Ca(OH)2发酵系统次之,自然条件发酵系统最弱.同时发现,FNA发酵系统中蛋白质和多糖含量较高,但是由于水解酶活性较低,F420活性最高,导致较低的SCFAs积累量.发酵液作为碳源进行生物脱氮试验研究表明,以Ca(OH)2及Ca(OH)2+NaCl发酵系统中的发酵液作为碳源具有良好的脱氮效果,与乙酸钠做为碳源效果相似,同时出现NO2--N积累现象,但是FNA, PMS, SDBS发酵系统的发酵液由于存在大量的消毒剂等化学物质导致生物利用性较差.  相似文献   

12.
氢氧化钙调控剩余污泥碱性发酵,可有效提高发酵液原位合成层状双金属氢氧化物(LDHs)提取短链脂肪酸(SCFAs)的效率.本文拟利用氢氧化钙和氢氧化钠混碱调控剩余污泥碱性发酵,提高发酵过程SCFAs产量,进一步提高SCFAs提取效率.通过配置不同氢氧化钠和氢氧化钙混合比例的碱液,用于调控剩余污泥碱性发酵实验,发现混碱比例为25∶75时,可避免钙离子对污泥水解产酸影响,发酵液中SCFAs浓度达到6581.4 mg·L~(-1)(以每COD计,下同),是空白对照组(4179.4 mg·L~(-1))的1.6倍.同时,碱液提供的钙离子可将污泥发酵过程释放的无机阴离子去除,CO■、PO■浓度分别低至3.7 mmol·L~(-1)和0.5 mg·L~(-1).利用氢氧化钠和氢氧化钙调控剩余污泥进行混碱厌氧发酵,可有效提高SCFAs的产量,消除主要无机阴离子对发酵液原位合成层状双金属氢氧化物(LDHs)提取SCFAs的干扰,合成的LDHs中SCFAs的含量为52.3 mg·g~(-1) LDHs,是空白组(18.9 mg·g~(-1)LDHs)的2.8倍.  相似文献   

13.
为了研究低温条件(15±2)℃下投加方式对剩余污泥碱性发酵的影响,将剩余污泥分别在NaOH、KOH、Ca(OH)2和混合碱(Ca(OH)2和KOH) 4种碱性(pH=10±0.2)系统中进行发酵,并在系统稳定后依次改变污泥投加方式(1次投加污泥、平均2次投加和平均3次投加),分别对发酵体系的剩余污泥溶液化、溶解性蛋白质、溶解性多糖、挥发性脂肪酸(SCFAs)和关键酶(水解酶和辅酶420(F420))进行研究.研究发现,4种碱性发酵体系中,不同投加方式对剩余污泥的水解和酸化性能具有显著的影响,其中SCOD随着污泥投加次数的增加略有减小,但是发酵液中可溶性的蛋白质和多糖有增加趋势.水解酶活性随着污泥投加次数的增加而降低,但是在NaOH和KOH发酵体系中,辅酶420随着投加次数的增加而增大,混合碱发酵体系中其活性基本不变,而在Ca(OH)2发酵体系中其活性则降低.NaOH、KOH和混合碱发酵体系产酸能力随投加次数的增加而下降,但是Ca(OH)2 发酵体系酸化能力则先增大后少量降低,由此发现,Ca(OH)2发酵体系水解及产酸能力较为稳定,同时该体系中乙酸/SCFAs最大,高于其他发酵体系的10%左右.  相似文献   

14.
The accumulation of short-chain fatty acids (SCFAs), a preferred carbon source for enhanced biological phosphorus removal microbes, was significantly improved when waste activated sludge (WAS) was fermented at pH 10. The kinetics of WAS hydrolysis and SCFAs production at pH 10 were investigated. It was observed that during WAS anaerobic fermentation at pH 10 the accumulation of SCFAs was limited by the hydrolysis process, and both the hydrolysis of WAS particulate COD and the accumulation of SCFAs followed first-order kinetics. The hydrolysis and SCFAs accumulation rate constants increased with a increasing of temperature from 10 to 35℃, which could be described by the Arrhenius equation. The kinetic data further indicated that SCFAs production at pH 10 was a biological process. Compared with the experiment of pH uncontrolled (blank test), both the rate constants of WAS hydrolysis and SCFAs accumulation at 20℃ were significantly improved when WAS was fermented at pH 10.  相似文献   

15.
以污水处理厂剩余活性污泥作为研究对象,在中温条件下,按照不同投加量和投加方式投加过氧化钙(CaO2)进行预处理,考察其对污泥发酵产酸和产甲烷的影响,以期确定CaO2最佳投加量和投加方式.结果表明,在(35±1)℃条件下,投加CaO2可提高剩余污泥发酵液pH值,从而促进有机物的快速溶出.在同样投加剂量条件下,一次性投加比多次投加更有利于污泥的溶解以及短链脂肪酸的积累.当一次性投加0.2g CaO2/g VSS时,发酵液中乙酸浓度在第7d达到最高值(169mg COD/g VSS),同时乙酸在6种主要酸中所占比例达到最大(71.0%).与一次性投加方式相比较,多次投加CaO2对产甲烷的抑制作用较小,不利于SCFAs的积累.  相似文献   

16.
直链烷基苯磺酸盐促进剩余污泥产生短链脂肪酸的研究   总被引:2,自引:0,他引:2  
姜苏  陈银广  周琪 《环境科学学报》2007,27(8):1300-1304
采用批试试验的方法研究了十二烷基苯磺酸钠(C12-LAS)对剩余污泥在厌氧发酵过程中产生的短链脂肪酸(SCFAs)的影响.结果表明,C12-LAS的投加极大地提高了剩余污泥厌氧发酵过程中的SCFAs产量.当C12-LAS加入量低于0.1g·g-1时,SCFAs产量随着C12-LAS加入量的增加而增加,然而,当C12-LAS加入量高于0.1g·g-1时,SCFAs产量反而有所降低.从污泥产酸量以及经济成本考虑,C12-LAS的最佳投加量为0.02g·g-1,此时剩余污泥的SCFAs最大产量出现在第6天.进一步的研究表明,C12-LAS不仅促使大量的碳水化合物和蛋白质脱离污泥颗粒并溶解到液相中,而且抑制了产甲烷菌的活性.尽管剩余污泥经历着酸化过程,但由于其释放出大量的NH4 -N,污泥在整个厌氧发酵过程中的pH值逐渐升高.  相似文献   

17.
矿化垃圾对剩余污泥厌氧水解、酸化的影响   总被引:1,自引:0,他引:1  
通过向剩余污泥发酵系统中加入不同剂量的矿化垃圾的方法,探究了矿化垃圾对剩余污泥厌氧水解、酸化过程的影响.结果表明,添加1/3g/g TSS(总悬浮固体)剂量以内的矿化垃圾能显著提高WAS的水解、酸化过程,且矿化垃圾的最佳投加量为1/3g/g TSS,在此条件下,试验组SCOD/TCOD以及最大产酸量(183.45mg COD/g VSS,发酵时间为6d)均高于空白组(79.45mg COD/g VSS,发酵时间为10d).机理研究表明,矿化垃圾能够促进污泥的溶解、蛋白质和多糖的水解以及氨基酸和葡萄糖的酸化.在投加矿化垃圾的反应体系中与水解、酸化有关酶的活性也均高于空白试验组,进一步证实了矿化垃圾能够强化污泥厌氧发酵的水解酸化反应.  相似文献   

18.
Effect of pH ranging from 4.0 to 11.0 on cofermentation of waste activated sludge (WAS) with food waste for short-chain fatty acids (SCFAs) production at ambient temperature was investigated in this study. Experimental results showed that the addition of food waste significantly improved the performance of WAS fermentation system, which resulted in the increases of SCFAs production and substrate reduction. The SCFAs production at pH 6.0, 7.0, 8.0, and 9.0 and fermentation time of 4 d was respectively 5022.7, 6540.5, 8236.6, and 7911.7 mg COD·L−1, whereas in the blank tests (no pH adjustment, pH 8.0 (blank test 1), no food waste addition, pH 8.0 (blank test 2), and no WAS addition (blank test 3)) it was only 1006.9, 971.1, and 1468.5 mg COD·L−1, respectively. The composition of SCFAs at pH from 6.0 to 9.0 was also different from other conditions and propionic acid was the most prevalent SCFA, which was followed by acetic and n-butyric acids, while acetic acid was the top product under other conditions. At pH 8.0 a higher volatile suspended solids (VSS) reduction of 16.6% for the mixture of WAS and food waste than the sole WAS indicated a synergistic effect existing in fermentation system with WAS and food waste. The influence of pH on the variations of nutrient content was also studied during anaerobic fermentation of the mixture of WAS and food waste at different pH conditions. The release of NH4+-N increased with fermentation time at all pH values investigated except 4.0, 5.0 and in blank test one. The concentrations of soluble phosphorus at acidic pHs and in the blank test one were higher than those obtained at alkaline pHs. Ammonia and phosphorus need to be removed before the SCFAs-enriched fermentation liquid from WAS and food waste was used as the carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号