首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 148 毫秒
1.
利用2016年182d的MODIS 3km AOD数据与地面监测数据,评估了混合效应模型不同参数组合的模拟性能,得出模型在解释AOD-PM2.5关系时,对时间序列变异的解释能力要比空间差异更佳.在此基础上,利用混合效应模型建立京津冀地区每日的AOD-PM2.5关系,模型拟合R2为0.92,交叉验证调整R2为0.85,均方根误差(RMSE)为12.30 μg/m3,平均绝对误差(MAE)为9.73 μg/m3,说明模型拟合精度较高.基于此模型估算的2016年京津冀地区年均PM2.5浓度为42.98 μg/m3,暖季(4月1日~10月31日)为43.35 μg/m3,冷季(11月1日~3月31日)为38.52 μg/m3,与同时期的地面监测数据差值分别为0.59,0.7,5.29 μg/m3.空间上,京津冀地区的PM2.5浓度呈现南高北低的特征,有一条明显的西南-东北走向的高值区.研究结果表明,基于每日混合效应模型可以准确评估京津冀地区的地面PM2.5浓度,且模型估算的PM2.5浓度分布状况为区域大气污染防治提供了基础的数据支撑.  相似文献   

2.
京津冀地区大气PM2.5污染严重.为揭示区域PM2.5时空分布规律,使用2013-2014年河北省地面站点PM2.5监测数据、MODIS AOD(气溶胶光学厚度)遥感数据、地面气象站点数据和土地利用调查数据,基于线性混合效应模型(LME),建立了ρ(PM2.5)时空变化与AOD因子、气象因子、土地利用因子之间的关系模型.采用十折交叉验证法对模型精度进行检验,并利用计算得到的校正因子[全部实测的ρ(PM2.5)年均值除以参与建模的所有实测ρ(PM2.5)年均值]纠正因AOD非随机性缺值导致的抽样偏差.结果表明:①河北省区域模拟精度R2(决定系数)为0.85,经交叉验证后R2为0.77,RMSE(均方根误差)和RPE(相对预测误差)分别为18.28 μg/m3和28.68%.②ρ(PM2.5)年均值模拟结果的校正因子范围为1.24~2.05,校正后的研究区ρ(PM2.5)年均值为89.84 μg/m3,与实际监测数据相近.③ρ(PM2.5)空间分布呈平原高、山区低,平原地区西南高、东北低的趋势.④ρ(PM2.5)与AOD、温度、相对湿度呈正相关,与风速、大气能见度呈负相关.研究显示,线性混合效应模型能有效对ρ(PM2.5)进行时空变化模拟,并实现对非地面监测地区ρ(PM2.5)时空变化的预测,恰当的预测因子组合和模型校正有助于模型预测精度的提升.   相似文献   

3.
利用MODIS气溶胶光学厚度(AOD)数据针对不同土地覆盖类型的适用性,提出了一种基于土地覆盖类型的AOD融合方法,生成了一种新的3km AOD数据集.在此基础上,通过地理加权回归(GWR)模型估算了京津冀地区2016年PM2.5浓度,并用交叉验证的方法对模型性能进行评价.结果表明:利用融合后的AOD数据建立的模型可解释PM2.594.85%的浓度变化,交叉验证R2为0.94,RMSE为9.27μg/m3,MPE为6.72μg/m3,明显优于多元线性回归(MLR)模型;基于GWR模型估算的京津冀地区2016年年均PM2.5浓度为58.57μg/m3,其中冬季PM2.5浓度最高,春秋季次之,夏季浓度最低,PM2.5月均浓度变化范围32.78~140.83μg/m3,8月份浓度最低,12月份浓度最高;空间分布南北差异显著,衡水市PM2.5污染最为严重,张家口市PM2.5浓度较低.利用此方法成功弥补了PM2.5空间缺失,为城市尺度的健康效应和环境流行病学研究提供数据支持.  相似文献   

4.
提出一种基于深度学习方法的地面PM2.5浓度时空估算模型(PM2.5-DNN),该模型基于葵花-8卫星反演的AOD数据,结合PM2.5监测站和气象站点观测数据对北京市地面PM2.5浓度进行了逐时的高精度模拟,同时将PM2.5-DNN模型的模拟性能与当前的主流方法进行了对比研究.结果表明,使用PM2.5-DNN模型估算的北京地区1km分辨率每小时地面PM2.5浓度与地表监测站观测数据对比的一致性较好,模型估算精度可达到R2=0.88,性能优于当前的主流方法.本文所提出的方法适用于区域尺度PM2.5浓度时空分布细粒度建模与估算,采用端到端的训练方式构建模型,为精细的PM2.5浓度估算提供了一个简便而有效的方法模型.  相似文献   

5.
基于静止卫星高分四号(GF-4)遥感数据,利用6SV辐射传输模型与暗目标算法进行高空间分辨率气溶胶光学厚度(AOD)遥感反演;在此基础上,结合地面监测站大气细颗粒物(PM2.5)浓度、气象资料等数据,采用物理订正方法及线性混合效应模型,实现长三角城市群区域大尺度空间连续的PM2.5浓度遥感反演;最后利用十折交叉验证法对反演精度进行验证.结果表明:GF-4反演的AOD结果分辨率较高,空间连续性好,与AERONET地基监测相关性R达到0.82;利用GF-4 AOD的PM2.5估算模型精度较高,模型估算PM2.5浓度与地面实测数据拟合度R2为0.74;在分春夏秋冬4个季节建模情景下,交叉验证R2依次为0.67,0.59,0.63和0.72,平均绝对误差MAE为10.40,7.42,10.10,13.34μg/m3,表明GF-4卫星适用于区域PM2.5浓度监测.  相似文献   

6.
卫星反演的气溶胶光学厚度(AOD)具有广泛的空间覆盖度和相对较高的时空分辨率. 基于AOD与PM2.5的相关关系来估算PM2.5浓度已成为监测近地面PM2.5的有效途径,其估算结果较可靠,能够为治理PM2.5污染提供数据基础和科学依据. 从反演AOD数据集和PM2.5浓度估算模型2个方面进行梳理归纳,从卫星轨道运行类型角度分析各类传感器的产品特征,并对缺失AOD的插补方法进行分类评价;对PM2.5浓度的估算模型进行比较分析,指出不同模型的优缺点和适应性. 结果表明:①各类卫星传感器均具有特定功能及优缺点,其中地球同步轨道(GEO)卫星的快速发展,使其在估算PM2.5浓度的应用上越来越广泛. ②插补后的AOD比AOD初始产品具有更连续的时空分布和更高的准确性,基于模型的多变量估算不仅可以实现数据的全面覆盖,还可以获得更好的估算精度. ③组合模型成为估算PM2.5浓度的重要方法,机器学习模型的加入能够有效提高PM2.5浓度的估算精度. 研究显示,利用AOD估算近地面PM2.5浓度不仅弥补了地面PM2.5监测的空间不连续性,更有助于解析PM2.5浓度的时空分布特征及污染来源.   相似文献   

7.
吴迪  杜宁  王莉  吴宇宏  张少磊  周彬  张显云 《环境科学》2023,44(7):3738-3748
卫星气溶胶光学厚度(AOD)和气象数据已被广泛用于估算空气动力学直径≤2.5μm的地表颗粒物(PM2.5)浓度.研究高时间分辨率、高精度的PM2.5浓度估算方法,对及时准确的空气质量预报和大气污染的预防及缓解具有重要意义.使用Himawari-8 AOD小时产品和ERA5气象再分析资料作为估算变量,提出GTWR-XGBoost组合模型,对四川省PM2.5小时浓度进行估算.结果表明:(1)提出的组合模型运用于全数据集的性能优于KNN、 RF、 AdaBoost、 GTWR、 GTWR-KNN、 GTWR-RF和GTWR-AdaBoost模型,拟合精度指标R2、 MAE和RMSE分别为0.96、 3.43μg·m-3和5.52μg·m-3,验证精度指标R2、 MAE和RMSE分别为0.9、 4.98μg·m-3和7.92μg·m-3.(2)该模型作用于PM2.5浓度小时估算...  相似文献   

8.
PM2.5对大气环境和人类健康危害极大,及时准确地掌握高时空分辨率的PM2.5浓度对空气污染防治起着重要作用.基于粤港澳大湾区2015~2020年多角度大气校正算法(MAIAC)1 km AOD产品、 ERA5气象资料和站点污染物浓度(CO、 O3、 NO2、 SO2、PM10和PM2.5),分别建立了估算PM2.5浓度的时空地理加权模型(GTWR)、 BP神经网络模型(BPNN)、支持向量机回归模型(SVR)和随机森林模型(RF).结果表明,RF模型的估算能力优于BPNN、 SVR和GTWR模型,BPNN、 SVR、 GTWR和RF模型的相关系数依次为0.922、 0.920、 0.934和0.981,均方根误差(RMSE)分别为7.192、 7.101、 6.385和3.670μg·m-3,平均绝对误差(MAE)分别为5.482、 5.450、 4.849和2.323μg·m-...  相似文献   

9.
为揭示京津冀地区高精度PM2.5的时空分布特征,以空间分辨率为1 km的MAIAC AOD数据为主要预测因子,以气象数据、植被指数、夜间灯光数、人口密度和海拔数据作为辅助因子,构建了一种新的时空混合效应模型(STLME),在拟合最优次区域划分方案基础上对京津冀地区PM2.5浓度进行预测分析.结果表明,基于STLME模型的ρ(PM2.5)预测精度高于传统的线性混合效应模型(LME),其十折交叉验证(CV)R2为0.91,明显高于LME模型的0.87,说明STLME模型在同时校正PM2.5-AOD关系的时空异质性方面具有优势.最优次区域划分方案识别出PM2.5-AOD关系的空间差异,并结合缓冲区平滑方法,提高了STLME模型预测精度.京津冀PM2.5浓度时空变化差异显著,高值区主要分布在以石家庄、邢台和邯郸为中心的河北南部,低值区则位于燕山-太行山区;冬季PM2.5污染最严重,其次是秋季和春季,夏季污染最轻.STLM...  相似文献   

10.
郭霖  孟飞  马明亮 《环境科学》2022,43(7):3483-3493
深入了解大气气溶胶时空变化及其影响因素,对控制大气污染,改善大气环境具有重要意义.首先利用2013~2019年的VIIRS IP气溶胶光学厚度(AOD)数据分析华北平原AOD的时空变化规律.其次,选取SO2、 NO2、 PM2.5、气象数据、 NDVI、 DEM、 GDP和POPU作为影响因素,基于XGBoost模型分别建立华北平原5个代表城市的AOD与其影响因素之间的连接模型,定量估算并揭示AOD时空分布规律背后各个影响因素的贡献.结果表明在空间分布上,华北平原AOD以太行山脉为界,呈现东南高西北低的格局.在时间变化上,5个城市AOD年均值整体呈下降趋势,AOD月均值先上升后下降,最高值出现在7月,最低值出现在12月.此外,建立的华北地区5个城市AOD估算模型精度较高,R2在0.60~0.67之间.华北平原的AOD影响因素中,NO2和SO2是对5个城市AOD贡献最大的影响因素,此外,PM2.5是另外一种重要的污染排放影响因素.气象因...  相似文献   

11.
收集并处理了遥感反演的气溶胶光学厚度(AOD)、归一化植被指数(NDVI)和气象数据,采用贝叶斯最大熵(BME)结合线性混合模型(LME)估算了2015年10月~2016年3月珠江三角洲地区近地表旬平均PM2.5质量浓度.结果表明,LME+BME模型的预测精度比LME模型有较大提升,LME+BME模型的交叉验证结果R2为0.751,RMSE为6.886μg/m3,MAE为4.52μg/m3,而LME模型的交叉验证结果R2为0.703,RMSE为7.546μg/m3,MAE为4.927μg/m3.空间分布看,PM2.5高浓度地区主要集中在广州、佛山、东莞等地区,低浓度地区主要集中在肇庆、惠州、江门的南部等地区;时间变化看,PM2.5污染比较严重的时间为2015年10月中旬、2015年11月下旬以及2016年3月下旬,而2015年10月上旬、2015年12月上旬和2016年1月下旬污染则相对较低.  相似文献   

12.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

13.
对目前大气环境颗粒物监测中采用的基于光散射法的3种型号传感器进行了评测研究,其中A和B是用于室内环境监测,C用于室外环境监测.对3种型号颗粒物传感器与基于β射线方法的标准仪器MATONE BAM-1020对比,对传感器的变异性、时间序列、传感器与标准仪器的线性相关性、其他因素影响、数据质量五个方面开展了分析.结果表明:各型号颗粒物传感器之间有较强相关性(R2达到了0.95以上);3种颗粒物传感器与标准仪器测量结果吻合度较高,R2分别为0.58,0.80,0.61,且在整个测试时间段内,传感器相对于标准仪器来说高估了PM2.5;高的相对湿度(RH>50%)和PM2.5/PM10(ratio)会对传感器产生影响.A、B、C三种型号传感器PM2.5数据平均绝对误差(MAE)分别为23.31,10.14,28.17μg/m3;归一化均方根误差(RMSE)分别为25.80,14.01,32.98μg/m3,准确性(A%)分别为51.39%,72.97%,46.51%.  相似文献   

14.
为探究大气环境中污染物与气象要素交互作用对PM2.5浓度变化的影响特征,利用成都市2014~2020年逐日大气污染物资料以及同期的气象资料,采用广义相加模型(GAMs)分析不同影响因素对当地PM2.5浓度变化的影响效应.结果表明,单影响因素GAMs模型中,无论全年还是冬季,PM2.5浓度与平均气温(T)、相对湿度(RH)、平均风速(Wind)、降水量(Prec)、O3、NO2、SO2和CO间均呈非线性关系,其中CO、NO2、SO2T和Wind对PM2.5浓度影响较大,与全年不同的是,冬季T和O3对PM2.5浓度变化的影响效应较全年明显减弱.多影响因素的GAMs模型中,T、Wind、RH、CO、NO2、SO2和O3这7个解释变量对PM2.5浓度变化的影响均较显著,构建的全年多影响因素GAMs模型调整后的R2=0.759,方差解释率为76.42%,冬季R2=0.708,方差解释率为72.2%,无论是全年还是冬季,CO都是PM2.5浓度变化的主导影响因素.GAMs交互效应模型发现,全年弱低温(7℃左右)+高相对湿度+高浓度CO+高浓度NO2+高浓度SO2协同作用条件下有利于PM2.5浓度的生成;冬季低Wind+高RH+高浓度CO+高浓度NO2+高浓度SO2共存条件下有利于PM2.5的生成,即该条件对PM2.5浓度的生成有协同放大效应.运用GAMs模型能够对PM2.5污染的主导影响因素进行识别,并定量化分析影响因素单效应及其交互作用对PM2.5浓度变化的影响特征,对PM2.5浓度污染防控研究具有重要指示意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号