首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of receiving water salinity on the effectiveness of two oil dispersants, Corexits® 9527 and 9500, was investigated using a recently implemented modified version of the Swirling Flask efficacy test. The dispersants were tested with ten different oils, representing a wide range of physical–chemical properties. Test salinities ranged from 0 to 35 ppt, with temperature held constant at 15°C. Results showed Corexit 9500 to be generally more effective on most of the dispersible oils at most salinities, but performance of both products was significantly affected by salinity. Both dispersants performed best at salinities above 25 ppt, with Corexit 9500 maintaining its effectiveness over a fairly wide range of salinities. Correlations between dispersant effectiveness and various oil physical/chemical properties were highly variable.  相似文献   

2.
This paper identifies and estimates time periods as ‘windows-of-opportunity’ where specific response methods, technologies, equipment, or products are more effective in clean-up operations for several oils. These windows have been estimated utilizing oil weathering and technology performance data as tools to optimize effectiveness in marine oil spill response decision-making. The windows will also provide data for action or no-action alternatives. Crude oils and oil products differ greatly in physical and chemical properties, and these properties tend to change significantly during and after a spill with oil aging (weathering). Such properties have a direct bearing on oil recovery operations, influencing the selection of response methods and technologies applicable for clean up, including their effectiveness and capacity, which can influence the time and cost of operations and the effects on natural resources.The changes and variations in physical and chemical properties over time can be modeled using data from weathering studies of specific oils. When combined with performance data for various equipment and materials, tested over a range of weathering stages of oils, windows-of-opportunity can be estimated for spill response decision-making. Under experimental conditions discussed in this paper, windows-of-opportunity have been identified and estimated for four oils (for which data are available) under a given set of representative environmental conditions. These ‘generic’ windows have been delineated for the general categories of spill response namely: (1) dispersants, (2) in situ burning, (3) booms, (4) skimmers, (5) sorbents, and (6) oil-water separators. To estimate windows-of-opportunity for the above technologies (except booms), the IKU Oil Weathering Model was utilized to predict relationships—with 5 m s−1 wind speed and seawater temperatures of 15°C.The window-of-opportunity for the dispersant (Corexit 9527®) with Alaska North Slope (ANS) oil was estimated from laboratory data to be the first 26 h. A period of ‘reduced’ dispersibility, was estimated to last from 26–120 h. The oil was considered to be no longer dispersible if treated for the first time after 120 h. The most effective time window for dispersing Bonnic Light was 0–2 h, the time period of reduced dispersibility was 2–4 h, and after 4 h the oil was estimated to be no longer dispersible. These windows-of-opportunity are based on the most effective use of a dispersant estimated from laboratory dispersant effectiveness studies using fresh and weathered oils. Laboratory dispersant effectiveness data cannot be directly utilized to predict dispersant performance during spill response, however, laboratory results are of value for estimating viscosity and pour point limitations and for guiding the selection of an appropriate product during contingency planning and response. In addition, the window of opportunity for a dispersant may be lengthened if the dispersant contains an emulsion breaking agent or multiple applications of dispersant are utilized. Therefore, a long-term emulsion breaking effect may increase the effectiveness of a dispersant and lengthen the window-of-opportunity.The window-of-opportunity of in situ burning (based upon time required for an oil to form an emulsion with 50% water content) was estimated to be approximately 0–36 h for ANS oil and 0–1 h for Bonnie Light oil after being spilled. The estimation of windows-of-opportunity for offshore booms is constrained by the fact that many booms available on the market undergo submergence at speeds of less than 2 knots. The data suggest that booms with buoyancy to weight ratios less than 8:1 may submerge at speeds within the envelope in which they could be expected to operate. This submergence is an indication of poor wave conformance, caused by reduction of freeboard and reserve net buoyancy within the range of operation. The windows-of-opportunity for two selected skimming principles (disk and brush), were estimated using modeled oil viscosity data for BCF 17 and BCF 24 in combination with experimental performance data developed as a function of viscosity. These windows were estimated to be within 3–10 h (disk skimmer) and after 10 h (brush skimmer) for BCF 17. Whereas for BCF 24, it is within 2–3 d (disk skimmer) and after 3 d (brush skimmer).For sorbents, an upper viscosity limit for an effective and practical use has in studies been found to be approximately 15,000 cP, which is the viscosity range of some Bunker C oils. Using viscosity data for the relative heavy oils, BCF 17 and BCF 24 (API gravity 17 and 24), the time windows for a sorbent (polyamine flakes) was estimated to be 0–4 and 0–10 d, respectively. With BCF 24, the effectiveness of polyamine flakes, was reduced to 50% after 36 h, although it continued to adsorb for up to 10 d. For BCF 17, the effectiveness of polyamine flakes was reduced to 50% after 12 h, although it continued to adsorb for up to 4 d. The windows-of-opportunity for several centrifuged separators based upon the time period to close the density gap between weathered oils and seawater to less than 0.025 g ml−1 (which is expected to be an end-point for effective use of centrifugal separation technology), were estimated to be 0–18 (ANS) and 0–24 h (Bonnie Light) after the spill. Utilizing the windows-of-opportunity concept, the combined information from a dynamic oil weathering model and a performance technology data base can become a decision-making tool; identifying and defining the windows of effectiveness of different response methods and equipment under given environmental conditions. Specific research and development needs are identified as related to further delineation of windows-of-opportunity.  相似文献   

3.
For oil spills in the open sea, operational experience has found that conventional response techniques, such as mechanical recovery, tend to remove only a small fraction of oil during major spills, a recent exception being the Mississippi River spill in Louisiana [Spill Sci. Technol. Bull. 7 (2002) 155]. By contrast, the use of dispersants can enable significant fractions of oil to be removed from the sea surface by dispersing the oil into the water column. It is thought that once dispersed the oil can biodegrade in the water column, although there is little information on the mechanism and rate of biodegradation. Two studies were undertaken on dispersion, microbial colonisation and biodegradation of Forties crude and Alaskan North Slope (ANS) oils under simulated marine conditions. The study using the Forties crude lasted 27 days and was carried out in conditions simulating estuarine and coastal conditions in waters around the UK (15 °C and in the presence of nutrients, 1 mg N-NO3/l), while the ANS study simulated low temperature conditions typical of Prince William Sound (8 °C) and took place over 35 days. The results of both studies demonstrated microbial colonisation of oil droplets after 4 days, and the formation of neutrally buoyant clusters consisting of oil, bacteria, protozoa and nematodes. By day 16, the size of the clusters increased and they sank to the bottom of the microcosms, presumably because of a decrease in buoyancy due to oil biodegradation, however biodegradation of n-alkanes was confirmed only in the Forties study. No colonisation or biodegradation of oil was noted in the controls in which biological action was inhibited. Oil degrading bacteria proliferated in all biologically active microcosms. Without dispersant, the onset of colonisation was delayed, although microbial growth rates and population size in ANS were greater than observed with the Forties. This difference reflected the greater droplet number seen with ANS at 8 °C than with Forties crude at 15 °C. Although these studies differed by more than one variable, complicating comparison, the findings suggest that dispersion (natural or chemical) changes the impact of the oil on the marine environment, potentially having important implications for management of oil spills in relation to the policy of dispersant use in an oil spill event.  相似文献   

4.
建立了一种基质固相分散萃取—气相色谱法测定土壤中8种有机氯农药含量的方法,优选了固相分散剂及其用量、洗脱溶剂以及土壤样品与分散剂的质量比。实验结果表明,在弗罗里硅土作为分散剂、正己烷和丙酮(体积比为1∶1)为洗脱溶剂、土壤样品与分散剂的质量比为1∶3的优化条件下,8种有机氯农药在50~250 μg/kg范围内表现出良好的线性关系,相关系数大于0.99,加标回收率为60.3%~94.3%,相对标准偏差为6.83%~8.95%。实际土壤质控样测试结果显示,本方法的测试结果在标准值的不确定度范围内,可满足土壤中有机氯农药残留的检测分析。  相似文献   

5.
This paper reports on the results of weathering studies conducted on four light crude oils from production platforms on the northwest shelf of Australia. The laboratory weathering included both evaporative weathering and emulsification studies. The fresh oils and their topped residues were subjected to a battery of physical and chemical characterization analyses. Detailed analyses were performed for n-alkanes by GC/FID and for mono- and polycyclic aromatic hydrocarbons and phenols by GC/MS. The water-in-oil emulsion formation properties of these oils and their topped residues were investigated at two environmentally significant temperatures (13 and 20°C). The results of the analyses indicate that these oils are very different compositionally and have a wide range of physical and chemical properties. The emulsification properties of these oils and their weathered residues ranged from oils that have very rapid water uptake to oils having no water uptake. Unexpectedly, the very waxy oils had very little water uptake and did not form stable water-in-oil emulsions.  相似文献   

6.
7.
In Brazil, and mainly in the State of Bahia, crude vegetable oils are widely used in the preparation of food. Street stalls, restaurants and canteens make a great use of palm oil and soybean oil. There is also some use of castor oil, which is widely cultivated in the Sertão Region (within the State of Bahia), and widely applied in industry. This massive use in food preparation leads to a huge amount of waste oil of different types, which needs either to be properly disposed of, or recovered. At the Laboratorio Energia e Gas-LEN (Energy & Gas lab.) of the Universidade Federal da Bahia, a cycle of experiments were carried out to evaluate the recovery of waste oils for biodiesel production. The experiences were carried out on a laboratory scale and, in a semi-industrial pilot plant using waste oils of different qualities. In the transesterification process, applied waste vegetable oils were reacted with methanol with the support of a basic catalyst, such as NaOH or KOH. The conversion rate settled at between 81% and 85% (in weight). The most suitable molar ratio of waste oils to alcohol was 1:6, and the amount of catalyst required was 0.5% (of the weight of the incoming oil), in the case of NaOH, and 1%, in case of KOH.The quality of the biodiesel produced was tested to determine the final product quality. The parameters analyzed were the acid value, kinematic viscosity, monoglycerides, diglycerides, triglycerides, free glycerine, total glycerine, clearness; the conversion yield of the process was also evaluated.  相似文献   

8.
This paper describes a study of the degradation of the ionic and anionic dispersants in the commercial product, FINASOL OSR 52. The biologic activator BIOLEN IG 30, composed of a mixture of bacteria specially selected for their capability to degrade a wide range of chemical compounds, was used as the degradation agent. The microorganisms were supplied with oligoelements and nutrients to facilite their development. The degradation process, kinetic coefficients have been determined at different conditions, ambient temperature and controlled at 20°C for both the degradation of ionic and anionic disperants.  相似文献   

9.
Biodiesel can be a potential alternative to petroleum diesel, but its high production cost has impeded its commercialization in most parts of the world. One of the main drivers for the generation and use of biodiesel is energy security, because this fuel can be produced from locally available resources, thereby reducing the dependence on imported oil. Many countries are now trying to produce biodiesel from plant or vegetable oils. However, the consumption of large amounts of vegetable oils for biodiesel production could result in a shortage in edible oils and cause food prices to soar. Alternatively, the use of animal fat, used frying oils, and waste oils from restaurants as feedstock could be a good strategy to reduce the cost. However, these limited resources might not meet the increasing demand for clean, renewable fuels. Therefore, recent research has been focused the use of residual materials as renewable feedstock in order to lower the cost of producing biodiesel. Microbial oils or single cell oils (SCOs), produced by oleaginous microorganisms have been studied as promising alternatives to vegetable or seed oils. Various types of agro-industrial residues have been suggested as prospective nutritional sources for microbial cultures. Since the most abundant residue from agricultural crops is lignocellulosic biomass (LCB), this byproduct has been given top-priority consideration as a source of biomass for producing biodiesel. But the biological transformation of lignocellulosic materials is complicated due to their crystalline structure. So, pretreatment is required before they can be converted into fermentable sugar. This article compares and scrutinizes the extent to which various microbes can accumulate high levels of lipids as functions of the starting materials and the fermentation conditions. Also, the obstacles associated with the use of LCB are described, along with a potentially viable approach for overcoming the obstacles that currently preclude the commercial production of biodiesel from agricultural biomass.  相似文献   

10.
The unstable nature of biocrude oils produced from conventional pyrolysis of biomass is one of the properties that limits its application. In the disposal of poultry litter via pyrolysis technology, the biocrude oil produced as a value-added product can be used for on farm applications. In this study, we investigated the influence of bedding material (wood shavings) on the storage stability of biocrude oils produced from the fast pyrolysis of poultry litter. The biocrude oils produced from manure, wood (pine and oak), and mixtures of manure and wood in proportions (75:25 50:50, and 25:75 w/w%) were stored under ambient conditions in sealed glass vials for a period of 6 months and their stability were monitored by measuring the changes in viscosity over time. The manure oil had the lowest rate of viscosity change and thus was relatively the most stable and the oils from the 50:50 w/w% litter mixtures were the least stable. The rate of viscosity change of the manure biocrude oil was 1.33 cP/day and that of the 50/50 litter mixture was 7.6 cP/day for pine and 4.17 cP/day for oak.The spectrometric analyses of the biocrude oils showed that the presence of highly reactive oxygenated functionalities in the oil were responsible for the instability characteristic of the litter biocrude oils. The poor stability of the biocrude oil from the 50:50 w/w% litter mixtures was attributed to reactions between nitrogenous compounds (amides) from protein degradation and oxygenated compounds from the decomposition of polysaccharides and lignin. The addition of 10% methanol and 10% ethanol to the oil from 50% manure and 50% pine reduced the initial viscosity of the oil and was also beneficial in slowing down the rate of viscosity change during storage.  相似文献   

11.
Bioremediation is a proven alternative for remediating petroleum‐impacted soils at exploration and production (E&P) sites. Monitoring remediation performance can involve detection and quantification of biodegradation resistant compounds such as C3017α(H),21β(H)‐hopane, which requires the use of gas chromatography with mass spectrometry detection (GC/MS). Due to the remoteness of many E&P sites, this technology is not always available, and alternative methods are needed to provide reliable quantitative measurements of petroleum remediation efficiency. This study provides a detailed chemical characterization of lacustrine‐sourced crude oils and a technical basis for measuring the effectiveness of bioremediation efforts for soil impacted by those crudes. We show that the novel isoprenoid hydrocarbon botryococcane is relatively stable in lacustrine‐sourced crude oils compared with C3017α(H),21β(H)‐hopane under moderate biodegradation conditions generally observed in field samples. We have also demonstrated that, due to the stability and relatively elevated concentration of botryococcane in lacustrine oils, it can be reliably measured using the more cost‐effective and available GC/FID methodology, and thereby be used to monitor the progress of ongoing soil bioremediation activities at remote sites.  相似文献   

12.
At an excitation wavelength of 320 nm, the ultraviolet fluorescence (UVF) spectra emitted by reference oils dispersed in seawater with mineral fines yielded two important results:
  • (1)Resuspended negatively-buoyant oil–mineral aggregates (OMAs) exhibited maximum fluorescence at an emission wavelength of 450 nm and,
  • (2)the hydrocarbons dispersed and/or dissolved in the seawater that remained after the aggregates had settled out exhibited maximum fluorescence at 355 nm.
Data from UVF analysis (450 nm emission) and microscopical observations of seven reference oils suggest that higher-viscosity oils are less likely to form aggregates with mineral fines. This decline in OMA formation with increased oil viscosity could be predicted from a decrease in the ratio of emission at 450–355 nm. The data suggest that direct UVF spectroscopy of dispersed/dissolved oil and OMAs in seawater can be used to predict and verify the extent of OMA formation.  相似文献   

13.
Emulsified oils have been used to stimulate anaerobic bioremediation at hundreds of sites contaminated with chlorinated solvents, perchlorate, heavy metals, and nitrate. A simple spreadsheet‐based tool has been developed to assist in the design of injection‐only systems for distributing emulsified oils in barriers and area treatments. This tool allows users to quickly compare the relative costs and performance of different injection alternatives and identify a design that is best suited to site‐specific conditions. Contact efficiency is estimated using results of prior numerical model simulations and dimensionless scaling factors that relate the volume of oil and water injected to treatment‐zone dimensions. Sensitivity analysis results indicate that maximum oil retention is one of the most important factors controlling system performance and cost. © 2008 Wiley Periodicals, Inc.  相似文献   

14.
Ecological risk assessment is a formal process, either quantitative or semi-quantitative, to evaluate the possible ecological consequences of human activities and natural catastrophes. While formal risk assessments have been used for years when dealing with risks to human health, the application of such structured analyses is less common for environmental issues. It is, however, an area of intense interest, both scientifically and technically, in the United States at the present time. This paper suggests a methodology for applying ecological risk assessment protocols to the oil spill response planning process, which should improve our ability to compare and evaluate response options, especially controversial options such as the use of dispersants.  相似文献   

15.
高艺玮  王国胜 《化工环保》2012,40(4):449-454
使用不同分散剂制备了聚乙烯吡咯烷酮-硫化镉(PVP-CdS)催化剂,研究了盐酸黄连素在PVP-CdS修饰玻碳电极上的电化学行为。实验结果表明:与裸电极相比,PVP-CdS修饰玻碳电极提高了盐酸黄连素的氧化电流;当外加电压为0.5~1.4 V、电位增量为0.018 V、缓冲溶液pH为6时,盐酸黄连素质量浓度在1~200 mg/L的范围内与氧化峰电流呈良好的线性关系,检出限为0.15 mg/L。通过盐酸黄连素氧化前后的红外谱图分析,推断出了氧化机理。  相似文献   

16.
金劲松  杨毅 《化工环保》2011,(2):140-143
提出了水域泄漏油品回收技术的装备需求,介绍了水域泄漏油品问收处理措施.采用拦油栅来控制漂浮在水上的油品,将泄漏油品集中在相对较小的区域内,并使水面的浮油层加厚,然后使用人工或机械对泄漏油品进行回收.对于水域中的少量泄漏油品,采用吸油材料来进行吸附.在油膜较薄,难以用机械方法回收的情况下,使用消油剂或固化剂进行处理.水域...  相似文献   

17.
This paper is a review of the major findings from laboratory studies and field trials conducted in Norway in recent years on the emulsification of oils spilled at sea. Controlled bench-scale and meso-scale basin experiments using a wide spectrum of oils have revealed that both the physico-chemical properties of the oils and the release conditions are fundamental determinants of the rate of emulsion formation, for the rheological properties of the emulsion formed and for the rate of natural dispersion at sea.During the last decade, several series of full-scale field trials with experimental releases of various crude oils have been undertaken in the North Sea and the Norwegian Sea. These have involved both sea surface releases, underwater pipeline leak simulations (release of oil under low pressure and no gas) and underwater blowout simulations (pressurized oil with gas) from 100 and 850 m depth. The field trials have been performed in co-operation with NOFO (Norwegian Clean Seas Association for Operating Companies), individual oil companies, the Norwegian Pollution Control Authority (SFT) and Minerals Management Services (MMS). SINTEF has been responsible for the scientific design and monitoring during these field experiments. The main objectives of the trials have been to study the behaviour of different crude oils spilled under various conditions and to identify the operational and logistical factors associated with different countermeasure techniques.The paper gives examples of data obtained on the emulsification of spilled oil during these field experiments. The empirical data generated from the experimental field trials have been invaluable for the validation and development of numerical models at SINTEF for predicting the spreading, weathering and behaviour of oil released under various conditions. These models are extensively used in contingency planning and contingency analysis of spill scenarios and as operational tools during spill situations and combat operations.  相似文献   

18.
This paper reports on a study the degradation of a highly aged hydrocarbon mixture originating from an accidental spill in an oil refinery. The biological activator BIOLEN IG 30 has been used as degradation agent microorganism and INIPOL EAP 22 as biodegradation process accelerator. The kinetic coefficients have been deduced by adjusting the two straight lines from a plot of the degradation process using zero-order kinetics. An aged hydrocarbon mixture dispersion was studied and efficiency ratios calculated. Degradation of the FINASOL OSR 51 dispersant used to disperse the hydrocarbon mixture has been also studied yielding the degradation process constant, biological oxygen demand (BOD), biological final demand (BODf), stabilization constant for the degradation process (k1) and the biological stabilization constant (k).  相似文献   

19.
An ongoing chemical and ecotoxicological study of Water Accommodated Fraction of oils is presented and the preliminary findings are discussed. The study aims at obtaining improved and realistic data on potential environmental effects of various oils released and weathered at sea. Such data will be used for improving algorithms in present fate and effect models for damage assessment studies and “Net Environmental Benefit Analysis” of response alternatives in various spill scenarios. Preliminary results show that models used to assess effects in the water column will need to resolve the water soluble fraction of oils into more than one single bulk parameter to produce realistic estimates of effects.  相似文献   

20.
This work follows on extensive empirical studies on the evaporation of oil and petroleum products. A study of the evaporative characteristics of 19 different crude oils and petroleum products was conducted. Best-fit equation parameters were determined for both percentage loss by time and absolute weight loss. All oils except for three (diesel fuel, FCC Heavy Cycle and Bunker C light) were found to fit logarithmic curves. The exceptions noted, fit square root curves with time for periods up to about 5 d. The equation constants were correlated with oil distillation data. The equation constants correlated highly with the percentage distilled at 180°C. Using this correlation, equations were developed by which the oil evaporation can be predicted using the distillation data alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号