首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poultry litter from broilers and turkeys are a mixture of manure, feathers, feed and wood shavings, thus pyrolysis oils produced from this material are influenced by the individual components. In order to determine the influence of wood shavings that are used as bedding material, we investigated the pyrolysis of pine wood shavings and poultry manure. Because manure from layer chickens are usually not contaminated with wood shavings, we made mixtures of layer manure and pine wood shavings in the following manure to wood ratios, 100:0, 75:25, 50:50, 25:75, and 0:100 w/w and pyrolyzed them in a fluidized bed reactor at 450 °C. The total liquid yield ranged from 43.3 to 62.7 wt.%. The layer manure oil had a HHV of 29.7 MJ/kg and pH of 5.89 compared to pine wood oil which had HHV of 25.6 MJ/kg and pH of 3.04. The addition of wood shavings to manure clearly influenced the physical properties of the oil, resulting in a decrease in pH and HHV and an increase in density. The oils had relatively high nitrogen content ranging from 1.36 to 5.88 wt.%. The ash (<0.07 wt.%) and sulfur (<0.28 wt.%) contents were very low. FTIR, 13C NMR and 1H NMR spectrometric analysis of the oils showed that manure oil was rich in hydrocarbons and nitrogenous compounds such as primary, secondary amides, aromatic amines and N-heterocyclic. The properties of the oils were strongly influenced by the amount of wood in the mixture.  相似文献   

2.
The safe and economical disposal of poultry litter is becoming a major problem for the USA poultry industry. Current disposal methods such as land application and feeding to cattle are now under pressure because of pollution of water resources due to leaching, runoffs and concern for mad cow disease contamination of the food chain. Incineration or combustion is potentially applicable to large scale operations, but for small scale growers and EPA non-attainment areas, this is not a suitable option because of the high cost of operation. Thus, there is a need for developing appropriate technologies to dispose poultry litter.Poultry litters from broiler chicken and turkey houses, as well as bedding material were converted into biocrude oil in a fast pyrolysis fluidized bed reactor. The biocrude oil yields were relatively low ranging from 36 wt% to 50 wt% depending on the age and bedding material content of the litter. The bedding material (which was mostly hardwood shavings) biocrude oil yield was 63 wt%. The higher heating value (HHV) of the poultry litter biocrude oils ranged from 26 MJ/kg to 29 MJ/kg while that of the bedding material was 24 MJ/kg. The oils had relatively high nitrogen content ranging from 4 wt% to 8 wt%, very low sulfur (<1 wt%) content and high viscosity. The viscosities of the oils appeared to be a function of both the source of litter and the pyrolysis temperature. The biochar yield ranged from 27 wt% to 40 wt% depending on the source, age and composition of the poultry litter. The biochar ash content ranged from 24 wt% to 54 wt% and was very rich in inorganic components such as potassium and phosphorous.  相似文献   

3.
Catalytic pyrolysis of car tire waste using expanded perlite   总被引:1,自引:0,他引:1  
In this study, the non-catalytic and catalytic pyrolysis experiments were conducted on the sample of tire waste using expanded perlite as an additive material to determine especially the effect of temperature and catalyst-to-tire ratio on the products yields and the compositions and qualities of pyrolytic oils (NCPO and CPO). Non-catalytic studies, which were carried out under the certain conditions (a nitrogen flow of 100 mL/min and a heating rate of 10 °C/min), showed that the highest yield of pyrolytic oil (NCPO) was 60.02 wt.% at 425 °C. Then, the catalytic pyrolysis studies were carried out at catalyst-to-tire ratio range of 0.05-0.25 and the highest catalytic pyrolytic oil (CPO) yield was 65.11 wt.% at the ratio of 0.10 with the yield increase of 8.48 wt.% compared with the non-catalytic pyrolysis. Lastly, the pyrolytic oils were characterized with applying a various techniques such as elemental analyses and various chromatographic and spectroscopic techniques (GC-MS, 1H NMR, FT-IR, etc.). The characterization results revealed that the pyrolytic oils which were complex mixtures of C5-C15 organic compounds (predominantly aromatic compounds) and also the CPO compared to the NCPO was more similar to conventional fuels in view of the certain fuel properties.  相似文献   

4.
This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80 °C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45 °C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil–toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80 °C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source.  相似文献   

5.
Chicken litter generally consists of a mixture of bedding, manure, feathers and spilled food. Flock of birds litter (flock) is a litter consisting of hardwood shavings, feed, feathers and manure; and broiler litter (broiler) is a cake of chicken litter. A kinetic investigation of the pyrolysis of chicken litter (flock and broiler) was carried out using thermogravimetric analysis (TGA) at heating rates of 5 degrees C/min, 10 degrees C/min and 20 degrees C/min. Most of the materials decomposed between 270 degrees C and 590 degrees C at each heating rate. The region of decomposition of flock and broiler was slightly lower than that of the wood chips. Wood chips (bedding material) decomposed in two stages, while flock and broiler decomposed in three stages. Apparent activation energies increased from 99 to 484 kJ/mol for the three samples when the pyrolytic conversion increased from 5% to 95%.  相似文献   

6.
Microwave receptor plays an important role in the microwave pyrolysis of sewage sludge in view of its significant influence on the yield and property of bio-fuel products. The yield and the chemical compositions of bio-fuels (gases and oils) obtained from sewage sludge mixed with different receptors (graphite, residue char, active carbon or silicon carbide) were investigated in this study by Gas Chromatography (GC), Gas Chromatography-Mass Spectrometry (GC-MS), and Fourier Transform Infrared Spectroscopy (FTIR). The results showed that the use of silicon carbide gave rise to the highest final temperature of 1130 °C, resulting in the highest yield of gas fraction (up to 63.2 wt.%). The low heating rate (200 °C/min) which was attributed to the addition of residue char promoted condensation reactions and resulted in an increase in solid yield. The existence of active carbon could prolong the resistance time of volatiles in the hot zone owing to its porous structure, generating the maximum concentration of H2 + CO (60%) in the pyrolysis gas. When graphite was used, the final low temperature favoured the cyclization of the alkenes, giving rise to a higher concentration of mononuclear aromatics in the pyrolysis oils. The model established in this study revealed that the quantity and quality of the products obtained from the microwave pyrolysis highly depended on the process conditions, which were influenced by the receptor significantly.  相似文献   

7.
This work was aimed at improving the pyrolysis oil quality of waste rubber by adding larch sawdust. Using a 1 kg/h stainless pyrolysis reactor, the contents of sawdust in rubber were gradually increased from 0%, 50%, 100% and 200% (wt%) during the pyrolysis process. Using a thermo-gravimetric (TG) analyzer coupled with Fourier transform infrared (FTIR) analysis of evolving products (TG–FTIR), the weight loss characteristics of the heat under different mixtures of sawdust/rubber were observed. Using the pyrolysis–gas chromatography (GC)–mass spectrometry (Py–GC/MS), the vapors from the pyrolysis processes were collected and the compositions of the vapors were examined. During the pyrolysis process, the recovery of the pyrolysis gas and its composition were measured in-situ at a reaction temperature of 450 °C and a retaining time of 1.2 s. The results indicated that the efficiency of pyrolysis was increased and the residual carbon was reduced as the percentage of sawdust increased. The adding of sawdust significantly improved the pyrolysis oil quality by reducing the polycyclic aromatic hydrocarbons (PAHs) and nitrogen and sulfur compounds contents, resulting in an improvement in the combustion efficiency of the pyrolysis oil.  相似文献   

8.
The potential utilization of burned wood in the manufacture of medium density fiberboard (MDF) was investigated. For this aim, the MDF panels were made of various mixtures of burned pine wood (Pinus sylvestris L.), unburned beech (Fagus orientalis L.) and oak (Ouercus robur L.) woods under commercial conditions in an MDF company. The mixture ratio of the unburned beech and oak woods to the burned pine wood were 50/50 wt%. The mixing ratios of burned wood chips with unburned wood chips were 0:100, 25:75, 50:50, 75:25 and 100:0, %, respectively. A commercial urea–formaldehyde resin was used as a binder. The physical properties measured in the investigation included density and thickness swelling, while the mechanical properties examined were bending strength, modulus elasticity, internal bond, screw holding ability perpendicular to the plane of panel, and janka hardness perpendicular to the plane of the panel. Surface roughness and color of the panels were also measured. The results indicated that all the panels met the mechanical properties of general-purpose MDF requirements of EN 622-5. The surface roughness of the MDF panels containing burned wood decreased with increasing burned wood content but remained higher than the control panels. The dimensional stability of the MDF panels decreased with the incorporation of burned wood fibers as compared with the control MDF panels.  相似文献   

9.
Biogas production from anaerobic digestion of chicken feathers with swine manure or slaughterhouse sludge was assessed in two separate experiments. Ground feathers without any pre-treatment were added to 42-L digesters inoculated with swine manure or slaughterhouse sludge, representing 37% and 23% of total solids, respectively and incubated at 25 °C in batch mode. Compared to the control without feather addition, total CH4 production increased by 130% (P < 0.001) and 110% (P = 0.09) in the swine manure and the slaughterhouse sludge digesters, respectively. Mixed liquor NH4N concentration increased (P < 0.001) from 4.8 and 3.1 g/L at the beginning of the digestion to 6.9 and 3.5 g/L at the end of digestion in the swine manure and the slaughterhouse sludge digesters, respectively. The fraction of proteolytic microorganisms increased (P < 0.001) during the digestion from 12.5% to 14.5% and 11.3% to 13.0% in the swine manure and the slaughterhouse sludge digesters with feather addition, respectively, but decreased in the controls. These results are reflective of feather digestion. Feather addition did not affect CH4 yields of the swine manure digesters (P = 0.082) and the slaughterhouse sludge digesters (P = 0.21), indicating that feathers can be digested together with swine manure or slaughterhouse sludge without negatively affecting the digestion of swine manure and slaughterhouse sludge.  相似文献   

10.
Four dairy cattle farms considered representative of Northern Spain milk production were studied. Cattle waste was characterised and energy consumption in the farms was inventoried. Methane emissions due to slurry/manure management and fuel consumption on the farms were calculated. The possibility of applying anaerobic digestion to the slurry to minimise emissions and of using the biogas produced to replace fossil fuels on the farm was considered. Methane emissions due to slurry management (storage and use as fertiliser) ranged from 34 to 66 kg CH4 cow−1 year−1 for dairy cows and from 13 to 25 kg CH4 cow−1 year−1 for suckler calves. Cattle on these farms are housed for most of the year, and the contribution from emissions from manure dropped in pastures is insignificant due to the very low methane conversion factors. If anaerobic digestion were implemented on the farms, the potential GHG emissions savings per livestock unit would range from 978 to 1776 kg CO2 eq year−1, with the main savings due to avoided methane emissions during slurry management. The methane produced would be sufficient to supply digester heating needs (35-55% of the total methane produced) and on-farm fuel energy requirements.  相似文献   

11.
Thermal cracking of oils from waste plastics   总被引:2,自引:0,他引:2  
Thermal cracking of decomposed waste plastic oil produces a good yield of olefins. The solvent extraction of such waste plastic oil seems to be efficient for increasing gas yields and recycling monomers. To assess the potential of monomer recovery from municipal waste plastics, the oils were cracked using a laboratory-scale quartz-tube reactor. The waste plastic oils were provided by two commercial plants of the Sapporo Plastic Recycle Co. and the Dohoh Recycle Center Co. in Japan. A model waste plastic oil made in a laboratory was also examined. Yields of ethene, propene, and other products were measured at different temperatures. Two-step pyrolysis reduces coking compared with the direct thermal degradation of plastics. The raffinates from waste plastic oils extracted by sulfolane were also cracked. The primary products were almost the same as those from nontreated oils. The maximum total gas yield was 78wt%–85wt% at 750°C, an increase of about 20wt% compared with that of nonextracted oil. Solvent extraction removes stable aromatic hydrocarbons such as styrene, which is more coked than cracked.  相似文献   

12.
In the present study the interactions between the main constituents of the refuse derived fuel (plastics, paper, and wood) during pyrolysis were studied. Binary mixtures of polyethylene-paper and polyethylene/sawdust have been transformed into pellets and pyrolyzed. Various mixtures with different composition were analyzed and pyrolysis products (tar, gas, and char) were collected. The mixtures of wood/PE and paper/PE have a different behavior. The wood/PE mixtures showed a much reduced interaction of the various compounds because the yields of pyrolysis products of the mixture can be predicted as linear combination of those of the pure components. On the contrary, a strong char yield increase was found at a low heating rate for paper/PE mixtures. In order to explain the results, the ability of wood and paper char to adsorb and convert the products of PE pyrolysis into was studied. Adsorption and desorption tests were performed on the char obtained by paper and wood by using n-hexadecane as a model compound for the heavy products of PE pyrolysis.  相似文献   

13.
将青霉素菌渣在400~700 ℃进行热解,研究了产物中热解炭、热解油及气体的产率,以及热解油的组成变化。实验结果表明:600 ℃时热解油产率最高,随着温度升高,热解炭的产率降低,气体的产率升高;热解油中含量最高的是含氧化合物,在400 ℃时质量分数达到最高值69.69%,含氧化合物的含量随着热解温度的升高而降低,酸和醇类是热解油中含量最多的含氧化合物;含氮有机化合物的质量分数随着热解温度的升高而升高,在700 ℃时达到最高值30.64%,酰胺、吡啶、吲哚、含氮杂环是主要的含氮有机化合物。  相似文献   

14.
The chemical structure of liquid products of the pinewood sawdust (W) co-pyrolysis with polystyrene (PS) and polypropylene (PP) with and without the zinc chloride as an additive was investigated. The pyrolysis process was carried out at 450 °C with the heating rate of 5 °C/min. The yield of liquid products of pyrolysis was in the range of 37–91 wt% and their form was liquid or semi-solid depending on the composition of the wood/polymer blend. The zinc chloride addition to wood/polymer blends has influenced the range of samples decomposition as well as the chemical structure of resulted bio-oils. All bio-oils from wood/polypropylene blends were two-phase (liquid and solid). Contrarily, all bio-oils obtained from biopolymer/polypropylene blends with zinc chloride added were yellow liquids. All analyses proved that the structure and the quality of bio-oil strongly depend on both the composition of the blend and the presence of ZnCl2 as an additive. The FT-IR analyses of oils showed that oxygen-containing groups and hydrocarbons content highly depend on the composition of biomass/synthetic polymer mixture. The fractionation of bio-oils by column chromatography with four different solvents was followed by GC–MS analysis. Results confirmed the significant removal and/or transformation of oxygen-containing organic compounds due to the zinc chloride presence during pyrolysis process.  相似文献   

15.
Modern dairies cause the accumulation of considerable quantity of dairy manure which is a potential hazard to the environment. Dairy manure can also act as a principal larval resource for many insects such as the black soldier fly, Hermetia illucens. The black soldier fly larvae (BSFL) are considered as a new biotechnology to convert dairy manure into biodiesel and sugar. BSFL are a common colonizer of large variety of decomposing organic material in temperate and tropical areas. Adults do not need to be fed, except to take water, and acquired enough nutrition during larval development for reproduction. Dairy manure treated by BSFL is an economical way in animal facilities. Grease could be extracted from BSFL by petroleum ether, and then be treated with a two-step method to produce biodiesel. The digested dairy manure was hydrolyzed into sugar. In this study, approximately 1248.6 g fresh dairy manure was converted into 273.4 g dry residue by 1200 BSFL in 21 days. Approximately 15.8 g of biodiesel was gained from 70.8 g dry BSFL, and 96.2 g sugar was obtained from the digested dairy manure. The residual dry BSFL after grease extraction can be used as protein feedstuff.  相似文献   

16.
An experimental study was undertaken to compare the differences between municipal solid waste (MSW) derived solid recovered fuel (SRF) (complying with CEN standards) and refuse derived fuel (RDF). Both fuels were co-combusted with coal in a 50 kW fluidised bed combustor and the metal emissions were compared. Synthetic SRF was prepared in the laboratory by grinding major constituents of MSW such as paper, plastic, textile and wood. RDF was obtained from a local mechanical treatment plant. Heavy metal emissions in flue gas and ash samples from the (coal + 10% SRF) fuel mixture were found to be within the acceptable range and were generally lower than that obtained for coal + 10% RDF fuel mixture. The relative distribution of heavy metals in ash components and the flue gas stream shows the presence of a large fraction (up to 98%) of most of the metals in the ash (except Hg and As). Thermo-gravimetric (TG) analysis of SRF constituents was performed to understand the behaviour of fuel mixtures in the absence and presence of air. The results obtained from the experimental study will enhance the confidence of fuel users towards using MSW-derived SRF as an alternative fuel.  相似文献   

17.
Tyre recycling has become a necessity because of the huge piles of tyres that represent a threat to the environment. The used tyres represent a source of energy and valuable chemical products. Waste tyres were pyrolysed catalytically in a batch reactor under atmospheric pressure. Calcium carbide was used as a catalyst to explore its effect on pyrolysis product distribution. The effect of temperature, amount of catalyst and time on the yields of the pyrolysed products was investigated. Char yield decreased with increase of pyrolysis temperature while total gas and liquid yields increased. The liquid fraction was obtained with boiling point up to 320 °C. The physical and chemical properties of the pyrolysed products obtained were characterized. The catalytic pyrolysis produced 45 wt.% aromatic, 35 wt.% aliphatic and 20 wt.% of polar hydrocarbons. The distillation data showed that ∼80% of oil has boiling point below 270 °C which is the boiling point for 50% of distilled product in commercial diesel oil. The oil fraction was found to have high gross calorific value; GCV (42.8 MJ kg−1). Its Specific gravity, viscosity, Kinematic viscosity, freezing point and diesel index were also within the limits of diesel fuel. The char residues were studied to investigate their characteristics for use as a possible adsorbent. Surface area of char before and after acid demineralization was determined to determine the adsorptive features for waste water treatment.  相似文献   

18.
An integrated composting-vermicomposting system has been developed for stabilization of waste activated sludge (WAS) using matured vermicompost as bulking material and Eisenia fetida as earthworm species. Composting was considered as the main processing unit and vermicomposting as polishing unit. The integrated system was optimized by successive recycling and mixing of bulking material with WAS during composting and examining the effects of environmental condition (i.e. temperature: 10-30 °C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m2) on vermicomposting. The composting stage resulted in sufficient enrichment of bulking material with organic matter after 20 cycles of recycling and mixing with WAS and produced materials acceptable for vermicomposting. Vermicomposting of composted material caused significant reduction in pH, volatile solids (VS), specific oxygen uptake rate (SOUR), total carbon (TC), total organic carbon (TOC), C/N ratio and pathogens and a substantial increase in electrical conductivity (EC), total nitrogen (TN) and total phosphorous (TP). The environmental conditions (i.e. temperature: 10-30 °C and relative humidity: 50 and 90%) and stocking density (0-5 kg/m2) have profound effects on vermicomposting. Temperature of 20 °C with high humidity is the best suited environmental condition for vermicomposting employing E. fetida. The favorable stocking density range for vermiculture is 0.5-2.0 kg/m2 (optimum: 0.5 kg/m2) and for vermicomposting is 2.0-4.0 kg/m2 (optimum: 3.0 kg/m2), respectively. The integrated composting-vermicomposting system potentially stabilizes and converts the hazardous WAS into quality organic manure for agronomic applications without any adverse effects.  相似文献   

19.
The corrosion from pyrolysis of PVC in plastic waste was reduced by copyrolysis of PVC with cattle manure. The optimization of pyrolysis conditions between PVC and cattle manure was studied via a statistical method, the Box-Behnken model. The pyrolysis reaction was operated in a tubular reactor. Heating rate, reaction temperature and the PVC:cattle manure ratio were optimized in the range of 1-5 degrees C/min, 250-450 degrees C and the ratio of 1:1-1:5, respectively. The suitable conditions which provided the highest HCl reduction efficiency were the lowest heating rate of 1 degrees C/min, the highest reaction temperature of 450 degrees C, and the PVC:cattle manure ratio of 1:5, with reliability of more than 90%. The copyrolysis of the mixture of PVC-containing plastic and cattle manure was operated at optimized conditions and the synergistic effect was studied on product yields. The presence of manure decreased the oil yield by about 17%. The distillation fractions of oil at various boiling points from both the presence and absence of manure were comparable. The BTX concentration decreased rapidly when manure was present and the chlorinated hydrocarbon was reduced by 45%. However, the octane number of the gasoline fraction was not affected by manure and was in the range of 99-100.  相似文献   

20.
Fly ash (FA) and vinasse (VN), two industrial wastes, are generated in huge amounts and cause serious hazards to the environment. In this experiment, different proportions of these two wastes were used as food for two epigeic earthworms (Eisenia fetida and Eudrilus eugeniae) to standardize the recycling technique of these two wastes and to study their effect on fungal especially cellulolytic fungal population, cellulase activity and their isozyme pattern, chitin content and microbial biomass of waste mixture during vermicomposting. Increasing VN proportion from 25% to 50% or even higher, counts of both fungi and cellulolytic fungi in waste mixtures were significantly (P ? 0.05) increased during vermicomposting. Higher cellulase activity in treatments having 50% or more vinasse might be attributed to the significantly (P ? 0.05) higher concentration of group I isozyme while concentrations of other isozymes (group II and III) of cellulase were statistically at par. Higher chitin content in vinasse-enriched treatments suggested that fungal biomass and fungi-to-microbial biomass ratio in these treatments were also increased due to vermicomposting. Results revealed that Eudrilus eugeniae and Eisenia fetida had comparable effect on FA and VN mixture during vermicomposting. Periodical analysis of above-mentioned biochemical and microbial properties and nutrient content of final vermicompost samples indicated that equal proportion (1:1, w/w) of FA and VN is probably the optimum composition to obtain best quality vermicompost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号