首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
McRae BH  Dickson BG  Keitt TH  Shah VB 《Ecology》2008,89(10):2712-2724
Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.  相似文献   

2.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   

3.
The Application of Neutral Landscape Models in Conservation Biology   总被引:14,自引:0,他引:14  
Neutral landscape models, derived from percolation theory in the field of landscape ecology, are grid-based maps in which complex habitat distributions are generated by random or fractal algorithms. This grid-based representation of landscape structure is compatible with the raster-based format of geographical information systems (GIS), which facilitates comparisons between theoretical and real landscapes. Neutral landscape models permit the identification of critical thresholds in connectivity, which can be used to predict when landscapes will become fragmented. The coupling of neutral landscape models with generalized population models, such as metapopulation theory, provides a null model for generating predictions about population dynamics in fragmented landscapes. Neutral landscape models can contribute to the following applications in conservation: (1) incorporation of complex spatial patterns in (meta)population models; (2) identification of species' perceptions of landscape structure; (3) determination of landscape connectivity; (4) evaluation of the consequences of habitat fragmentation for population subdivision; (5) identification of the domain of metapopulation dynamics; (6) prediction of the occurrence of extinction thresholds; ( 7) determination of the genetic consequences of habitat fragmentation; and (8) reserve design and ecosystem management. This generalized, spatially explicit framework bridges the gap between spatially implicit, patch-based models and spatially realistic GIS applications which are usually parameterized for a single species in a specific landscape. Development of a generalized, spatially explicit framework is essential in conservation biology because we will not be able to develop individual models for every species of management concern.  相似文献   

4.
Understanding the processes leading to population declines in fragmented landscapes is essential for successful conservation management. However, isolating the influence of disparate processes, and dispersal in particular, is challenging. The Grey Shrike-thrush, Colluricincla harmonica, is a sedentary woodland-dependent songbird, with learned vocalizations whose incidence in suitable habitat patches falls disproportionally with decline in tree cover in the landscape. Although it has been suggested that gaps in tree cover might act as barriers to its dispersal, the species remains in many remnants of native vegetation in agricultural landscapes, suggesting that it may have responded to habitat removal and fragmentation by maintaining or even increasing dispersal distances. We quantified population connectivity of the Grey Shrike-thrush in a system fragmented over more than 120 years using genetic (microsatellites) and acoustic (song types) data. First, we tested for population genetic and acoustic structure at regional and local scales in search of barriers to dispersal or gene flow and signals of local spatial structuring indicative of restricted dispersal or localized acoustic similarity. Then we tested for effects of habitat loss and fragmentation on genetic and acoustic connectivity by fitting alternative models of mobility (isolation-by-distance [the null model] and reduced and increased movement models) across treeless vs. treed areas. Birds within -5 km of each other had more similar genotypes and song types than those farther away, suggesting that dispersal and song matching are limited in the region. Despite restricted dispersal detected for females (but not males), populations appeared to be connected by gene flow and displayed some cultural (acoustic) connectivity across the region. Fragmentation did not appear to impact greatly the dispersal of the Grey Shrike-thrush: none of the mobility models fit the genetic distances of males, whereas for females, an isolation-by-distance model could not be rejected in favor of the models of reduced or increased movement through treeless gaps. However, dissimilarities of the song types were more consistent with the model of reduced cultural connectivity through treeless areas, suggesting that fragmentation impedes song type sharing in the Grey Shrike-thrush. Our paper demonstrates that habitat fragmentation hinders important population processes in an Australian woodland bird even though its dispersal is not detectably impacted.  相似文献   

5.
Abstract:  The ability of populations to be connected across large landscapes via dispersal is critical to long-term viability for many species. One means to mitigate population isolation is the protection of movement corridors among habitat patches. Nevertheless, the utility of small, narrow, linear features as habitat corridors has been hotly debated. Here, we argue that analysis of movement across continuously resistant landscapes allows a shift to a broader consideration of how landscape patterns influence connectivity at scales relevant to conservation. We further argue that this change in scale and definition of the connectivity problem improves one's ability to find solutions and may help resolve long-standing disputes regarding scale and definition of movement corridors and their importance to population connectivity. We used a new method that combines empirically derived landscape-resistance maps and least-cost path analysis between multiple source and destination locations to assess habitat isolation and identify corridors and barriers to organism movement. Specifically, we used a genetically based landscape resistance model for American black bears ( Ursus americanus ) to identify major movement corridors and barriers to population connectivity between Yellowstone National Park and the Canadian border. Even though western Montana and northern Idaho contain abundant public lands and the largest wilderness areas in the contiguous United States, moving from the Canadian border to Yellowstone Park along those paths indicated by modeled gene flow required bears to cross at least 6 potential barriers. Our methods are generic and can be applied to virtually any species for which reliable maps of landscape resistance can be developed.  相似文献   

6.
Abstract:  Connectivity of habitat patches is thought to be important for movement of genes, individuals, populations, and species over multiple temporal and spatial scales. We used graph theory to characterize multiple aspects of landscape connectivity in a habitat network in the North Carolina Piedmont (U.S.A).. We compared this landscape with simulated networks with known topology, resistance to disturbance, and rate of movement. We introduced graph measures such as compartmentalization and clustering, which can be used to identify locations on the landscape that may be especially resilient to human development or areas that may be most suitable for conservation. Our analyses indicated that for songbirds the Piedmont habitat network was well connected. Furthermore, the habitat network had commonalities with planar networks, which exhibit slow movement, and scale-free networks, which are resistant to random disturbances. These results suggest that connectivity in the habitat network was high enough to prevent the negative consequences of isolation but not so high as to allow rapid spread of disease. Our graph-theory framework provided insight into regional and emergent global network properties in an intuitive and visual way and allowed us to make inferences about rates and paths of species movements and vulnerability to disturbance. This approach can be applied easily to assessing habitat connectivity in any fragmented or patchy landscape.  相似文献   

7.
Habitat loss and fragmentation can negatively influence population persistence and biodiversity, but the effects can be mitigated if species successfully disperse between isolated habitat patches. Network models are the primary tool for quantifying landscape connectivity, yet in practice, an overly simplistic view of species dispersal is applied. These models often ignore individual variation in dispersal ability under the assumption that all individuals move the same fixed distance with equal probability. We developed a modeling approach to address this problem. We incorporated dispersal kernels into network models to determine how individual variation in dispersal alters understanding of landscape-level connectivity and implemented our approach on a fragmented grassland landscape in Minnesota. Ignoring dispersal variation consistently overestimated a population's robustness to local extinctions and underestimated its robustness to local habitat loss. Furthermore, a simplified view of dispersal underestimated the amount of habitat substructure for small populations but overestimated habitat substructure for large populations. Our results demonstrate that considering biologically realistic dispersal alters understanding of landscape connectivity in ecological theory and conservation practice.  相似文献   

8.
Here we propose an integrated framework for modeling connectivity that can help ecologists, conservation planners and managers to identify patches that, more than others, contribute to uphold species dispersal and other ecological flows in a landscape context. We elaborate, extend and partly integrate recent network-based approaches for modeling and supporting the management of fragmented landscapes. In doing so, experimental patch removal techniques and network analytical approaches are merged into one integrated modeling framework for assessing the role of individual patches as connectivity providers. In particular, we focus the analyses on the habitat availability metrics PC and IIC and on the network metric Betweenness Centrality. The combination and extension of these metrics jointly assess both the immediate connectivity impacts of the loss of a particular patch and the resulting increased vulnerability of the network to subsequent disruptions. In using the framework to analyze the connectivity of two real landscapes in Madagascar and Catalonia (NE Spain), we suggest a procedure that can be used to rank individual habitat patches and show that the combined metrics reveal relevant and non-redundant information valuable to assert and quantify distinctive connectivity aspects of any given patch in the landscape. Hence, we argue that the proposed framework could facilitate more ecologically informed decision-making in managing fragmented landscapes. Finally, we discuss and highlight some of the advantages, limitations and key differences between the considered metrics.  相似文献   

9.
10.
Abstract:  Connectivity is a measure of how landscape features facilitate movement and thus is an important factor in species persistence in a fragmented landscape. The scarcity of empirical studies that directly quantify species movement and determine subsequent effects on population density have, however, limited the utility of connectivity measures in conservation planning. We undertook a 4-year study to calculate connectivity based on observed movement rates and movement probabilities for five age-sex classes of painted turtles ( Chrysemys picta ) inhabiting a pond complex in an agricultural landscape in northern Virginia (U.S.A.). We determined which variables influenced connectivity and the relationship between connectivity and subpopulation density. Interpatch distance and quality of habitat patches influenced connectivity but characteristics of the intervening matrix did not. Adult female turtles were more influenced by the habitat quality of recipient ponds than other age-sex classes. The importance of connectivity on spatial population dynamics was most apparent during a drought. Population density and connectivity were low for one pond in a wet year but dramatically increased as other ponds dried. Connectivity is an important component of species persistence in a heterogeneous landscape and is strongly dependent on the movement behavior of the species. Connectivity may reflect active selection or avoidance of particular habitat patches. The influence of habitat quality on connectivity has often been ignored, but our findings highlight its importance. Conservation planners seeking to incorporate connectivity measures into reserve design should not ignore behavior in favor of purely structural estimates of connectivity.  相似文献   

11.
Abstract:  Because of widespread habitat fragmentation, maintenance of landscape connectivity has become a major focus of conservation planning, but empirical tests of animal movement in fragmented landscapes remain scarce. We conducted a translocation experiment to test the relative permeability of three landscape elements (open habitat, shrubby secondary vegetation, and wooded corridors) to movement by the Chucao Tapaculo ( Scelorchilus rubecula ), a forest understory bird endemic to South American temperate rainforest. Forty-one radio-tagged subjects were translocated (individually) to three landscape treatments consisting of small release patches that were either entirely surrounded by open habitat (pasture), entirely surrounded by dense shrubs, or linked to other patches by wooded corridors that were otherwise surrounded by open matrix. The number of days subjects remained in release patches before dispersal (a measure of habitat resistance) was significantly longer for patches surrounded by open habitat than for patches adjoining corridors or surrounded by dense shrubs. These results indicate that open habitat significantly constrains Chucao dispersal, in accord with expectation, but dispersal occurs equally well through wooded corridors and shrub-dominated matrix. Thus, corridor protection or restoration and management of vegetation in the matrix (to encourage animal movement) may be equally feasible alternatives for maintaining connectivity.  相似文献   

12.
Abstract:  Organisms respond to their surroundings at multiple spatial scales, and different organisms respond differently to the same environment. Existing landscape models, such as the "fragmentation model" (or patch-matrix-corridor model) and the "variegation model," can be limited in their ability to explain complex patterns for different species and across multiple scales. An alternative approach is to conceptualize landscapes as overlaid species-specific habitat contour maps. Key characteristics of this approach are that different species may respond differently to the same environmental conditions and at different spatial scales. Although similar approaches are being used in ecological modeling, there is much room for habitat contours as a useful conceptual tool. By providing an alternative view of landscapes, a contour model may stimulate more field investigations stratified on the basis of ecological variables other than human-defined patches and patch boundaries. A conceptual model of habitat contours may also help to communicate ecological complexity to land managers. Finally, by incorporating additional ecological complexity, a conceptual model based on habitat contours may help to bridge the perceived gap between pattern and process in landscape ecology. Habitat contours do not preclude the use of existing landscape models and should be seen as a complementary approach most suited to heterogeneous human-modified landscapes.  相似文献   

13.
Effects of land-use change on the conservation of biodiversity have become a concern to conservation scientists and land managers, who have identified loss and fragmentation of natural areas as a high-priority issue. Despite urgent calls to inform national, regional, and state planning efforts, there remains a critical need to develop practical approaches to identify where important lands are for landscape connectivity (i.e., linkages), where land use constrains connectivity, and which linkages are most important to maintain network-wide connectivity extents. Our overall goal in this paper was to develop an approach that provides comprehensive, quantitative estimates of the effects of land-use change on landscape connectivity and illustrate its use on a broad, regional expanse of the western United States. We quantified loss of habitat and landscape connectivity for western forested systems due to land uses associated with residential development, roads, and highway traffic. We examined how these land-use changes likely increase the resistance to movement of forest species in non-forested land cover types and, therefore, reduce the connectivity among forested habitat patches. To do so, we applied a graph-theoretic approach that incorporates ecological aspects within a geographic representation of a network. We found that roughly one-quarter of the forested lands in the western United States were integral to a network of forested patches, though the lands outside of patches remain critical for habitat and overall connectivity. Using remotely sensed land cover data (ca. 2000), we found 1.7 million km2 of forested lands. We estimate that land uses associated with residential development, roads, and highway traffic have caused roughly a 4.5% loss in area (20 000 km2) of these forested patches, and continued expansion of residential land will likely reduce forested patches by another 1.2% by 2030. We also identify linkages among forest patches that are critical for landscape connectivity. Our approach can be readily modified to examine connectivity for other habitats/ecological systems and for other geographic areas, as well as to address more specific requirements for particular conservation planning applications.  相似文献   

14.
Limited knowledge of dispersal for most organisms hampers effective connectivity conservation in fragmented landscapes. In forest ecosystems, deadwood‐dependent organisms (i.e., saproxylics) are negatively affected by forest management and degradation globally. We reviewed empirically established dispersal ecology of saproxylic insects and fungi. We focused on direct studies (e.g., mark‐recapture, radiotelemetry), field experiments, and population genetic analyses. We found 2 somewhat opposite results. Based on direct methods and experiments, dispersal is limited to within a few kilometers, whereas genetic studies showed little genetic structure over tens of kilometers, which indicates long‐distance dispersal. The extent of direct dispersal studies and field experiments was small and thus these studies could not have detected long‐distance dispersal. Particularly for fungi, more studies at management‐relevant scales (1–10 km) are needed. Genetic researchers used outdated markers, investigated few loci, and faced the inherent difficulties of inferring dispersal from genetic population structure. Although there were systematic and species‐specific differences in dispersal ability (fungi are better dispersers than insects), it seems that for both groups colonization and establishment, not dispersal per se, are limiting their occurrence at management‐relevant scales. Because most studies were on forest landscapes in Europe, particularly the boreal region, more data are needed from nonforested landscapes in which fragmentation effects are likely to be more pronounced. Given the potential for long‐distance dispersal and the logical necessity of habitat area being a more fundamental landscape attribute than the spatial arrangement of habitat patches (i.e., connectivity sensu strict), retaining high‐quality deadwood habitat is more important for saproxylic insects and fungi than explicit connectivity conservation in many cases.  相似文献   

15.
Circuit-theory applications to connectivity science and conservation   总被引:1,自引:0,他引:1  
Conservation practitioners have long recognized ecological connectivity as a global priority for preserving biodiversity and ecosystem function. In the early years of conservation science, ecologists extended principles of island biogeography to assess connectivity based on source patch proximity and other metrics derived from binary maps of habitat. From 2006 to 2008, the late Brad McRae introduced circuit theory as an alternative approach to model gene flow and the dispersal or movement routes of organisms. He posited concepts and metrics from electrical circuit theory as a robust way to quantify movement across multiple possible paths in a landscape, not just a single least-cost path or corridor. Circuit theory offers many theoretical, conceptual, and practical linkages to conservation science. We reviewed 459 recent studies citing circuit theory or the open-source software Circuitscape. We focused on applications of circuit theory to the science and practice of connectivity conservation, including topics in landscape and population genetics, movement and dispersal paths of organisms, anthropogenic barriers to connectivity, fire behavior, water flow, and ecosystem services. Circuit theory is likely to have an effect on conservation science and practitioners through improved insights into landscape dynamics, animal movement, and habitat-use studies and through the development of new software tools for data analysis and visualization. The influence of circuit theory on conservation comes from the theoretical basis and elegance of the approach and the powerful collaborations and active user community that have emerged. Circuit theory provides a springboard for ecological understanding and will remain an important conservation tool for researchers and practitioners around the globe.  相似文献   

16.
Managing Boreal Forest Landscapes for Flying Squirrels   总被引:5,自引:0,他引:5  
Abstract: Flying squirrel (Pteromys volans) populations have declined severely during the past few decades, and the species has become a focal species in forest management and the conservation debate in Finland. We compared landscape structure around known flying squirrel home ranges with randomly chosen forest sites to determine which landscape patterns characterize the areas occupied by the species in northern Finland. We sought to identify the key characteristics of the landscape that support the remaining flying squirrel populations. We analyzed landscape structure within circular areas with 1- and 3-km radii around 63 forest sites occupied by flying squirrels, and around 96 random sites. We applied stepwise analysis of the landscape structure where landscapes were built up step-by-step by adding patch types in order of their suitability for the flying squirrel. The land-use and forest-resource data for the analysis were derived from multisource national forest inventory and imported to a geographical information system. Landscape patch types were divided into three suitability categories: breeding habitat (mixed spruce-deciduous forests); dispersal habitat ( pine and young forests); and unsuitable habitat ( young sapling stands, open habitats, water). Flying squirrel landscapes contained more suitable breeding habitat patches and were better connected by dispersal habitats than random landscapes. Our results suggest that for the persistence of the flying squirrel, forest managers should 1) maintain a deciduous mixture, particularly in spruce-dominated forests; 2) maintain physical connectivity between optimal breeding habitats; and 3) impose coarse-grained structures on northeastern Finnish landscapes at current levels of habitat availability.  相似文献   

17.
The removal, alteration and fragmentation of habitat in many parts of the world has led to a loss of biodiversity. Within the prevailing societal limitations the process is not easily reversed. Attempts are being made to minimise the fragmentation of remaining habitat by strategically reversing or managing habitat loss. Although their relative usefulness is a topic of debate among ecologists, habitat corridors are seen as one way of maintaining spatially dependent ecological processes within landscapes where habitat has been seriously depleted. Corridors can only be effective if they significantly contribute to the species sustaining processes of gene flow, resource access or the colonisation of vacant patches. We present a spatial habitat modelling methodology for evaluating the contribution and potential contribution of connecting paths to landscape connectivity. We have developed the spatial links tool (SLT), which maps link value across a region. The SLT combines connectivity measures from metapopulation ecology with the least cost path algorithm from graph theory, and can be applied to continuously variable landscape data. Combined with expert judgement, link value maps can be used to delineate habitat corridors. The approach capitalises on some synergies between ecological relevance and computational efficiency to produce an easily applied heuristic tool that has been successfully applied in NSW Australia.  相似文献   

18.
Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.  相似文献   

19.
Buenau KE  Rassweiler A  Nisbet RM 《Ecology》2007,88(12):3022-3031
Many species that compete for space live on heterogeneous landscapes and interact at local scales. The quality, amount, and structure of landscapes may have considerable impact on the ability of species to compete or coexist, yet basic models of space competition do not include that level of detail. We model space competition between two species with positive feedback through recruitment facilitation, which creates the potential for alternative stable states to occur. We compare the predictions of a spatially implicit model with a simulation model that includes explicit space and landscape structure. We create structured landscapes in which we specify the amount of habitat and degree of fragmentation and ask how landscape structure, dispersal strategy, and scale affect the presence of alternative stable states, or bistability. We find that structured landscapes can reduce the range of parameter values that lead to bistability in our model, but they do not eliminate bistability. The type of landscape and the dispersal distance for each species also influence the amount of environmental change needed for abrupt community shifts to occur. Coexistence of the two competitors is possible under certain conditions when connectivity is low. Consequently, landscape structure may lead to considerable disparity between the predictions of simple models and actual dynamics on complex landscapes during environmental change.  相似文献   

20.
Remote sensing and geographical information systems are used to analyze landscapes important to species of conservation concern. The accuracy of the methods depends on how closely habitat mapping classes are linked to population demography. Habitat use by Florida Scrub Jays ( Aphelocoma c. coemlescens ) was quantified using circular plots. Habitat variation was mapped using high-resolution aerial photography on a site where all Florida Scrub Jays were color-banded. Nest site selection, nest success, yearling production, and breeder survival were measured within Florida Scrub Jay territories. Habitat use was lowest in areas without scrub oaks or areas within 136 m from forests. Open oak, dominated by scrub oaks and open sandy areas, had the highest use and nest success among habitats. Open oak occurred as narrow patches ( <20 m wide) in landscapes dominated by matrix habitat (palmetto-lyonia and swale marshes). Most wide patches (>50 m) of open oak were potential population sources, where reproduction exceeded mortality. Areas with patches of open oak of less than 1 ha were usually population sinks. Open oak occurred as less flammable patches in a landscape subject to frequent fires. Population sources varied temporally and spatially with fires and site potential to support scrub oaks (soils). Analyses of landscape patterns and dynamics indicated that habitat mapping should not only include patches of currently optimal habitat but should also include landscapes associated with open oak. The influences of landscape patterns on habitat use, reproductive success, survival, and territory size can be quantified at different scales starting with attributes associated with habitat patches, nest sites, and territories. Potential mapping errors occur, however, when habitats are used to quantify the areal extent of sources and sinks and similar population attributes important for species persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号