首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Nitric oxide (NO) and nitrous oxide (N2O) fluxes were measured from agricultural, forest and moorland environments, using chamber techniques. Maximum emissions of NO and N2O were measured from the agricultural soils shortly after fertiliser application (7 ng NO-N m–2 s–1 and 91 ng N2O-N m–2 s–1). For the non-agricultural soils the NO flux ranged from –0.3 to 0.5 ng NO-N m–2 s–1 and the N2O flux ranged from 1 to 2.7 ng N2O-N m–2 s–1. Emissions, however, were increased 2 to 7 fold when N deposition (uplands) and N fixation (alder plantations) contributed to the pool of soil available N. The best predictors of the NO emission were soil NO 3 and soil temperature, accounting for 60% of the variability observed. The prediction of N2O was less successful. Only 30% of the variability could be explained by the soil NO 3 and the soil moisture content, soil temperature did not have a significant effect on the N2O emission.  相似文献   

2.
Nitrous oxide (N2O) accounts for 5%of the total enhanced greenhouse effect and responsiblefor the destruction of the stratospheric ozone. The rice-wheat cropping system occupying 26 million ha ofproductive land in Asia could be a major source ofN2O as most of the fertilizer N in this region isconsumed by this system. Emission of N2O asinfluenced by application of urea, urea plus farm yardmanure (FYM), and urea plus dicyandiamide (DCD), anitrification inhibitor, was studied in rice-wheatsystems of Indo-Gangetic plains of India. Total emissionof N2O-N from the rice-wheat systems varied between654 g ha-1 in unfertilized plots and 1570 g ha-1 in urea fertilized plots. Application of FYM and DCDreduced emission of N2O-N in rice. The magnitude ofreduction was higher with DCD. In wheat also N2O-Nemission was reduced by DCD. FYM applied in rice had noresidual effect on N2O-N emission in wheat. In riceintermittent wetting and drying condition of soilresulted in higher N2O-N emission than that ofsaturated soil condition. Treatments with 5 irrigationsgave higher emissions in wheat than those with 3irrigations. In rice-wheat system, typical of a farmer'sfield in Indo-Gangetic plains, where 240 kg N isgenerally applied through urea, N2O-N emission is1570 g ha-1 (0.38% of applied N) and application ofFYM and DCD reduced it to 1415 and 1096 g ha-1,respectively.  相似文献   

3.
The NO, NO2 and N2O emission was measured, upon application of nitrate, ammonium and both, to four Belgian soils with different characteristics. The addition of NH 4 + caused higher NO and N2O emissions than the addition of no nitrogen, or the addition of NO 3 . In contrast to the two soils with a pH of approximately 8 the two soils with a pH around 6 showed a considerable delay in production of both NO and N2O upon the application of the ammonium, probably due to the lag-period of nitrification. The soils with a pH of 8 gave higher emissions on the application of NH 4 + than the soils with a pH of 6. The emission of NO2 was found to be considerably lower than the NO emission from the soils. The NO/NO2 ratio varied between 5–25 at considerable NO emissions (>50 nmol kg–1). In the controls of soil 1 and soil 2, which showed very low NO emissions ratios of <1 were observed. The N2O/NO ratios varied between 5–20 when NO emissions were considerable (>50 nmol kg–1). Soil 3 and 4 gave lower N2O/NO ratios than soil 1 and 2. In the controls of soil 1 and soil 2, at low NO emissions, N2O/NO ratios of >300 were observed. Soil 3 and 4 gave higher NO/NO2 and lower N2O/NO ratios than soil 1 and 2.  相似文献   

4.
Composting can be a source of N2O andCH4 production. In this investigation, differentcompost heaps of organic household waste weremonitored with the focus on potential formation ofCH4 and N2O in the heaps and emission ofthese gases from the heaps. The studied compost heapshad different compost ages, turning intervals andcompost sizes. The analysed compost gases containedbetween 1–3421 L of N2O-N L-1 and 0–470 mL of CH4 L-1. The emission rates ofN2O and CH4 from the compost heaps werebetween 1–1464 mg N2O m-2 day-1 and0–119 000 mg CH4 m-2 day-1. These verylarge differences in compost gas composition andemission indicate the importance of compostmanagement. The results also give an understanding ofwhere in the composting process an increasing emissionof N2O and CH4 can occur.  相似文献   

5.
The anthropogenic emission sources of methane (CH4) and nitrous oxide (N2O) in the Federal Republic of Germany were investigated. The object of the recently completed first phase of this research project was to summarize the present knowledge about the emission sources, make a first rough estimate of the emissions, identify the need for further research in the field, and - as far as possible - discuss the existing possibilities to reduce emissions. The main CH4 emission sources identified are the landfills, stock farming and pit mining, the main N2O sources are agriculture (including a minor contribution from animal wastes) and the production of adipic acid, the latter possibly being reducible by means of a new catalytic process. The total anthropogenic emissions of CH4 from Germany are estimated at 5.4 – 7.7 million tonnes per year, contributing a share of roughly 2 % to the world-wide anthropogenic emissions (350 million t/a). Those of N2O are estimated at 200 000 – 280 000 tonnes per year (world-wide 1.4 – 6.5 million t/a).  相似文献   

6.
Wet deposition is one of the important sources of nitrogen input into the ecosystem. It also contributes to rain acidity in some environments. In this study we reported the annual as well as seasonal trends of nitrogen wet deposition at three locations in Thailand: Bangkok, Chiang Mai and Nan. Comparison of nitrogen wet deposition between in rural and in the urban areas was also made. Daily rainfall was measured and monthly rainwater was collected for nitrogen analysis during 1999–2002. The average NO3 concentration in rainwater collected from the rural sites (60 km from urban area) was around 0.2–0.3 mg L–1, while that from the urban areas of Chiang Mai and Nan cities it was 0.4–0.5 mg L–1. NH4 + concentration in rainwater showed the similar ranges to that of NO3 , except at Nan where concentration was not significantly different between the urban and rural sites. On the other hand, the average concentrations of NO3 were higher at Bangkok site than other sites, while concentration of NH4 + was almost the same between Chiang Mai and Bangkok. Wet deposition of NO3 at the rural sites of Chiang Mai and Nan ranged from 2.1 to 3.2 kg N ha–1 yr–1, while at the urban sites this ranged from about 6 kg N ha–1 yr–1 in Chiang Mai and Nan Cities to 8.6 kg N ha–1 yr–1 in Bangkok. Wet deposition of NH4 + at the rural sites of Chiang Mai and Nan was about 2.4 to 3.6 kg N ha–1 yr–1 and at the urban sites of Chiang Mai, Nan and Bangkok this was 7.7, 4.9 and 8.1 kg N ha–1 yr–1, respectively. Thus, it was concluded that wet deposition of both nitrogen species was significantly higher at the urban sites than at the rural sites.  相似文献   

7.
Atmospheric deposition of the major elements was estimated from throughfall and bulk deposition measurements on 13 plots of the Swiss Long-Term Forest Ecosystem Research (LWF) between 1995 and 2001. Independent estimates of the wet and dry deposition of nitrogen (N) and sulfur (S) on these same plots were gained from combined simplified models. The highest deposition fluxes were measured at Novaggio (Southern Switzerland), exposed to heavy air pollution originating from the Po Plain, with throughfall fluxes averaging 29 kg ha–1 a–1 for N and 15 kg ha–1 a–1 for S. Low deposition fluxes were measured on the plots above 1800 m, with throughfall fluxes lower than 4.5 kg ha–1 a–1 for N and lower than 3 kg ha–1 a–1 for S. The wet deposition of N and S derived from bulk deposition was close to the modeled wet deposition, but the dry deposition derived from throughfall was significantly lower than the modeled dry deposition for both compounds. However, both the throughfall method and the model yielded total deposition estimates of N which exceeded the critical loads calculated on the basis of long-term mass balance considerations. These estimates were within or above the range of empirical critical loads except above 1800 m.  相似文献   

8.
Most of the important factors causing differences in nutrient losses and their interaction were analysed in three small catchments that are located in partially different geographic and climatic conditions in Lithuania. The investigation revealed that climatic factors change the amount and pattern of water discharge over year (larger water discharge during winter in the catchment located closer to the sea), but nutrient leaching is more dependent on land use. Agricultural factors, such as larger cultivated area and excessive fertilisation in one catchment cause larger nitrogen losses (15 kg N ha–1 year–1). Large area of non-intensively used grassland leads to very small nitrogen losses (5.7 kg N ha–1 year–1) in another catchment. However, larger water discharge combined with loamy sandy soils leads to comparatively high nitrogen losses (12 kg N ha–1 year–1). The highest P losses (0.318 kg P ha–1 year–1) occurred in the catchment with hilly relief and clay soil texture. In summary, extensive agriculture in the post-Soviet countries has reduced the importance of agricultural activity for the extent of nutrient losses and agricultural factors (cultivation, fertilisation and livestock density) are responsible for the losses only in the region of sufficient agricultural activity (N input – 71.5 kg N ha–1, livestock density – 0.87 LU ha–1).  相似文献   

9.
One of the most important databases needed for estimating emissions of carbon dioxide resulting from changes in the cover, use, and management of tropical forests is the total quantity of biomass per unit area, referred to as biomass density. Forest inventories have been shown to be valuable sources of data for estimating biomass density, but inventories for the tropics are few in number and their quality is poor. This lack of reliable data has been overcome by use of a promising approach that produces geographically referenced estimates by modeling in a geographic information system (GIS). This approach has been used to produce geographically referenced, spatial distributions of potential and actual (circa 1980) aboveground biomass density of all forests types in tropical Africa. Potential and actual biomass density estimates ranged from 33 to 412 Mg ha–1 (106g ha–1) and 20 to 299 Mg ha–1, respectively, for very dry lowland to moist lowland forests and from 78 to 197 Mg ha–1 and 37 to 105 Mg ha–1, respectively, for montane-seasonal to montane-moist forests. Of the 37 countries included in this study, more than half (51%) contained forests that had less than 60% of their potential biomass. Actual biomass density for forest vegetation was lowest in Botswana, Niger, Somalia, and Zimbabwe (about 10 to 15 Mg ha–1). Highest estimates for actual biomass density were found in Congo, Equatorial Guinea, Gabon, and Liberia (305 to 344 Mg ha–1). Results from this research effort can contribute to reducing uncertainty in the inventory of country-level emission by providing consistent estimates of biomass density at subnational scales that can be used with other similarly scaled databases on change in land cover and use.  相似文献   

10.
An experiment was conducted to assess the role of different concentrations of dicyandiamide (DCD), a potent nitrification inhibitor, on temporal changes in nitrous oxide emission from sandy loam agricultural soil. It was found that with increasing concentration of DCD i.e. from 6 to 12% of nitrogen applied in the form of urea, there was a decrease in the both average and peak N2O emissions. However, from 14% DCD treated soil, there was a non-significant alteration in the N2O emission. Maximum average N2O efflux of 217.55 μg m−2 h−1 was noted from control plots. As compared to control, there was an attenuation of 50, 58, 65, and 91% average N2O efflux from 6, 8, 10 and 12% DCD applied pots, respectively, whereas, there was a negative average of N2O efflux from the soil with 14% DCD treatment. The soil N content also showed a significant correlation with N2O emission. Therefore, 12% DCD treatment has been found to be the best with regard to attenuation of nitrous oxide from sandy loam agricultural soils.  相似文献   

11.
To assess the concern over declining base cation levels in forest soils caused by acid deposition, input-output budgets (1990s average) for sulphate (SO4), inorganic nitrogen (NO3-N; NH4-N), calcium (Ca), magnesium (Mg) and potassium (K) were synthesised for 21 forested catchments from 17 regions in Canada, the United States and Europe. Trend analysis was conducted on monthly ion concentrations in deposition and runoff when more than 9 years of data were available (14 regions, 17 sites). Annual average SO4 deposition during the 1990s ranged between 7.3 and 28.4 kg ha−1 per year, and inorganic nitrogen (N) deposition was between 2.8 and 13.8 kg ha−1 per year, of which 41–67% was nitrate (NO3-N). Over the period of record, SO4 concentration in deposition decreased in 13/14 (13 out of 14 total) regions and SO4 in runoff decreased at 14/17 catchments. In contrast, NO3-N concentrations in deposition decreased in only 1/14 regions, while NH4-N concentration patterns varied; increasing at 3/14 regions and decreasing at 2/14 regions. Nitrate concentrations in runoff decreased at 4/17 catchments and increased at only 1 site, whereas runoff levels of NH4-N increased at 5/17 catchments. Decreasing trends in deposition were also recorded for Ca, Mg, and K at many of the catchments and on an equivalent basis, accounted for up to 131% (median 22%) of the decrease in acid anion deposition. Base cation concentrations in streams generally declined over time, with significant decreases in Ca, Mg and K occurring at 8, 9 and 7 of 17 sites respectively, which accounted for up to 133% (median 48%) of the decrease in acid anion concentration. Sulphate export exceeded input at 18/21 catchments, likely due to dry deposition and/or internal sources. The majority of N in deposition (31–100%; median 94%) was retained in the catchments, although there was a tendency for greater NO3-N leaching at sites receiving higher (<7 kg ha-1 per year) bulk inorganic N deposition. Mass balance calculations show that export of Ca and Mg in runoff exceeds input at all 21 catchments, but K export only exceeds input at 16/21 sites. Estimates of base cation weathering were available for 18 sites. When included in the mass balance calculation, Ca, Mg and K exports exceeded inputs at 14, 10 and 2 sites respectively. Annual Ca and Mg losses represent appreciable proportions of the current exchangeable soil Ca and Mg pools, although losses at some of the sites likely occur from weathering reactions beneath the rooting zone and there is considerable uncertainty associated with mineral weathering estimates. Critical loads for sulphur (S) and N, using a critical base cation to aluminium ratio of 10 in soil solution, are currently exceeded at 7 of the 18 sites with base cation weathering estimates. Despite reductions in SO4 and H+ deposition, mass balance estimates indicate that acid deposition continues to acidify soils in many regions with losses of Ca and Mg of primary concern. The U.S. Government's right to retain a non-exclusive, royalty free licence in and to any copyright is acknowledged. The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

12.
An experiment was conducted under laboratory conditions to investigate the effect of two systemic herbicides viz., pendimethalin and quizalofop, at their recommended field rates (1.0 kg and 50 g active ingredient ha − 1, respectively) on the growth and activities of non-symbiotic N2-fixing bacteria in relation to mineralization and availability of nitrogen in a Typic Haplustept soil. Both the herbicides, either singly or in a combination, stimulated the growth and activities of N2-fixing bacteria resulting in higher mineralization and availability of nitrogen in soil. The single application of quizalofop increased the proliferation of aerobic non-symbiotic N2-fixing bacteria to the highest extent while that of pendimethalin exerted maximum stimulation to their N2-fixing capacity in soil. Both the herbicides, either alone or in a combination, did not have any significant difference in the stimulation of total nitrogen content and availability of exchangeable NH4  +  while the solubility of NO3  −  was highly manifested when the herbicides were applied separately in soil.  相似文献   

13.
Present and future annual methane flux estimates out of landfills, rice paddies and natural wetlands, as well as the sorption capacity of aerobic soils for atmospheric methane, are assessed. The controlling factors and uncertainties with regard to soil methanogenesis and methanotrophy are also briefly discussed.The actual methane emission rate out of landfills is estimated at about 40 Tg yr–1. Changes in waste generation, waste disposal and landfill management could have important consequences on future methane emissions from waste dumps. If all mitigating options can be achieved towards the year 2015, the CH4 emission rate could be reduced to 13 Tg yr–1. Otherwise, the emission rate from landfills could increase to 63 Tg yr–1 by the year 2025. Methane emission from rice paddies is estimated at 60 Tg yr–1. The predicted increase of rice production between the years 1990 and 2025 could cause an increase of the CH4 emission rate to 78 Tg yr–1 by the year 2025. When mitigating options are taken, the emission rate could be limited to 56 Tg yr–1. The methane emission rate from natural wetlands is about 110 Tg yr–1. Because changes in the expanse of natural wetland area are difficult to assess, it is assumed that methane emission from natural wetlands would remain constant during the next 100 years. Because of uncertainties with regard to large potential soil sink areas (e.g. savanna, tundra and desert), the global sorption capacity of aerobic soils for atmospheric methane is not completely clear. The actual estimate is 30 Tg yr–1.In general, the net contribution of soils and landfills to atmospheric methane is estimated at 180 Tg yr–1 (210 Tg yr–1 emission, 30 Tg yr–1 sorption). This is 36% of the global annual methane flux (500 Tg yr–1).  相似文献   

14.
Readily available nitrogen (N) sources such as ammonium nitrate with excessive irrigation present a potential hazard for the environment. The computer program Nitrate Leaching and Economic Analysis Package (NLEAP) is a mechanistic model developed for rapid site-specific estimates of nitrate-nitrogen (NO3-N) moving below the root zone in agricultural crops and potantial impacts of NO3-N leaching into groundwater. In this study, the value of NLEAP was tested to simulate N uptake by crops and NO3-N leaching parameters in large lysimeters under the tomato crop. Three seedlings of tomato variety of H-2274 (Lycopersicum esculentum L.) were transplanted into each lysimeter. N fertilizer at the rate of 140 kg N ha–1 was sidedressed in two split applications, the first half as ammonium sulphate and the second half as ammonium nitrate. The lysimeters were irrigated based on programs of C 0.75, 1.00, 1.25 and 1.50, C referring to class A-Pan evaporation coefficients. Parameters such as leaching index (LI), annual leaching risk potential (ALRP), N available for leaching (NAL), amount of NO3-N leached (NL) and amount of N taken up by the crops (NU) were estimated using the NLEAP computer model. To test the ability of model to simulate N uptake and NL, measured values were compared with simulated values. Significant correlations, R2 = 0.92 and P < 0.03 for the first year and R2 = 0.86 and P < 0.06 for the second year, were found between measured and simulated values for crop N consumption, indicating that the NLEAP model adequately described crop N uptake under the varied irrigation programs using an optimal N fertilization program for the experimental site. Significant correlations, R2 = 0.96 and P < 0.01 for the first year and R2 = 0.97 and P < 0.01 for the second year, were also found between measured and simulated values of NL, indicating that the NLEAP model also adequately predicted NL under the varied irrigation programs. Therefore, this computer model can be useful to estimate the NO3-N moving beyond the root zone under conditions in which the present experiment was carried out. Also, the NLEAP-estimated NAL values and other parameters can also be used to improve N management practices and N fertilizer recommendations that will help to decrease the adverse effect of N fertilizer on groundwater quality and farm profitability.  相似文献   

15.
Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical zones, driven by relatively high private economic benefit. However, the impact of tea plantations on the regional environment, including ecosystem services and disservices are unclear. In this study, we developed an assessment framework for determining the private economic benefits and environmental externalities (the algebraic sum of the regulating services and disservices) of tea plantations in China. Our results showed that tea plantations provided private economic benefits of 5,652 yuan ha?1 year?1 (7.6 yuan?=?1 USD in 2007) for tea farmers, plus positive environmental externalities of 6,054 yuan ha?1 year?1 for the society. The environmental externalities were calculated as the sum of the value of four regulating services, including carbon sequestration (392 yuan ha?1 year?1); soil retention (72 yuan ha?1 year?1); soil fertility protection (3,189 yuan ha?1 year?1) and water conservation (2,685 yuan ha?1 year?1), and three disservices, including CO2 emission (?39 yuan ha?1 year?1), N2O emission (?137 yuan ha?1 year?1) and nonpoint source pollution (?108 yuan ha?1 year?1). Before the private optimal level, the positive environmental externalities can be maintained by private economic benefits; if a social optimal level is required, subsidies from government are necessary.  相似文献   

16.
Measurements of methane emission rates and concentrations in the soil were made during four growing seasons at the International Rice Research Institute in the Philippines, on plots receiving different levels of organic input. Fluxes were measured using the automated closed chambers system (total emission) and small chambers installed between plants (water surface flux). Concentrations of methane in the soil were measured by collecting soil cores including the gas phase (soil-entrapped methane) and by sampling soil solution in situ (dissolved methane). There was much variability between seasons, but total fluxes from plots receiving high organic inputs (16–24 g CH4 m–2) always exceeded those from the low input plots (3–9 g CH4 m–2). The fraction of the total emission emerging from the surface water (presumably dominated by ebullition) was greater during the first part of the season, and greater from the high organic input plots (35–62%) than from the low input plots (15–23%). Concentrations of dissolved and entrapped methane in the low organic input plots increased gradually throughout the season; in the high input plots there was an early-season peak which was also seen in emissions. On both treatments, periods of high methane concentrations in the soil coincided with high rates of water surface flux whereas low concentrations of methane were generally associated with low flux rates.  相似文献   

17.
The Dutch National Monitoring Programme for Effectiveness of the Minerals Policy (LMM) was initiated to allow detection of a statutory reduction in nitrate leaching caused by a decreasing N load. The starting point, or baseline, was taken as the nitrate concentration of the upper metre of groundwater sampled on 99 farms in the 1992–1995 period in the sandy areas of the Netherlands, where predominantly grass and maize grow. We found here that a reduction in nitrate leaching of more than 20% in future would almost certainly be detected with the LMM. Detecting downward trends due to decreasing N load will require nitrate concentrations to also be related to soil drainage, precipitation excess leading to groundwater recharge and to location. Furthermore, we found that about 16% of the N load in the Dutch sandy regions was being leached to the upper metre of groundwater in the 1992–1995 period. The critical N load in approximately 1990 for exceeding the EC limit value for nitrate, NO3, (50 mg L–1) in the upper metre of groundwater for the mean situation for grassland, maize and arable land in the sandy area was found to be 210 kg ha–1 a–1. Because manure management has been altered, the critical load found will be lower than the current critical load .  相似文献   

18.
Changes in SO inf4 sup2- deposition predicted to occur in response to implementation of announced SO2 emission control programs in Canada and the U.S.A. have been used as input to water chemistry models thereby giving an estimate of the changes in lake acid neutralizing capacity (ANC) and pH that can be expected from these programs. Eastern Canada has been divided into 22 subregions for the purpose of this analysis. Relative to the current level (1982–86) of SO inf4 sup2- deposition (Scenario 1), the effect of the Canadian SO2 emission control program alone (Scenario 2) is compared to that obtained when controls are implemented throughout North America (Scenarios 3 and 4). SO2 emission reduction will effect a shrinkage of the high wet SO inf4 sup2- deposition field in NE North America such that under Scenario 4 conditions, almost no area will remain in Canada that receives >20 kg ha-1 yr-1. The greatest decrease in deposition and resulting change in lake chemistry occurs in southern Ontario and southwestern Quebec. ANC distributions shift to higher concentrations and the percentage of lakes having pH<6 decreases in these areas. The Atlantic Provinces will obtain only a minor benefit from the control programs, i.e. experiencing only a small decrease in deposition and improvement in water quality. High sensitivity of the terrain in many parts of Atlantic Canada means that large numbers of lakes will remain acidic (i.e. ANC<0) and/or have pH<6 (an important biological threshold) even after full implementation of the current plans for SO2 control in Canada and the U.S.  相似文献   

19.
Abstact Aboveground biomass, aboveground litterfall, and leaf litter decomposition of five indigenous tree stands (pure stands ofPinus brutia,Pinus nigra,Cedrus libani,Juniperus excelsa, and a mixed stand ofAbies cilicica,P. nigra, andC. libani) were measured in an eastern Mediterranean evergreen needleleaf forest of Turkey. Measurements were converted to regional scale estimates of carbon (C) stocks and fluxes of forest ecosystems, based on general non-site-specific allometric relationships. Mean C stock of the conifer forests was estimated as 97.8± 79 Mg C ha−1consisting of 83.0 ± 67 Mg C ha−1in the aboveground and 14.8 ± 12 Mg C ha−1in the belowground biomass. The forest stands had mean soil organic carbon (SOC) and nitrogen (SON) stocks of 172.0 ± 25.7 Mg C ha−1and 9.2 ± 1.2 Mg N ha−1, respectively. Mean total monthly litterfall was 376.2± 191.3 kg C ha−1, ranging from 641 ± 385 kg C ha−1forPinus brutiato 286 ± 82 kg C ha−1forCedrus libani. Decomposition rate constants (k) for pine needles were 0.0016 forCedrus libani, 0.0009 forPinus nigra, 0.0006 for the mixed stand, and 0.0005 day−1forPinus brutiaand Juniperus excelsa. Estimation of components of the C budgets revealed that the forest ecosystems were net C sinks, with a mean sequestration rate of 2.0 ± 1.1 Mg C ha−1 yr−1ranging from 3.2 ± 2 Mg C ha−1forPinus brutiato 1.6 ± 0.6 Mg C ha−1forCedrus libani. Mean net ecosystem productivity (NEP) resulted in sequestration of 98.4 ± 54.1 Gg CO2 yr−1from the atmosphere when extrapolated for the entire study area of 134.2 km2(Gg = 109 g). The quantitative C data from the study revealed the significance of the conifer Mediterranean forests as C sinks  相似文献   

20.
Throughfall and open field bulk precipitation were measured at three coniferous sites during 1995–2002 in the framework of ICP Integrated Monitoring and at five coniferous sites during 1996–2002 in the framework of ICP Forests (Level II). The coniferous canopies acted as a sink for nitrate and ammonium and as a source for base cations: Ca2+, Mg2+ and K+. The estimated share of SO4–S dry deposition from total deposition was 1.5–4 times higher for dormant period compared to growing period. During the study period average annual throughfall and bulk deposition of SO4–S decreased significantly, 2.8 and 2.3 times, respectively. Throughfall enrichment with base cations increased in the order Mg < Na < Ca < K. Using Na as a tracer ion, average dry deposition and canopy leaching were calculated. Leaching was the dominant process for TF enrichment by potassium. Leaching of base cations occurred during growing as well as dormant period. The calculated internal flux of Ca2+ and Mg2+ varied in the range of 0.6–2.0 and 0.6–1.2 kg ha−1 per year in spruce and pine stands, respectively. The internal circulation of K+ was significantly higher (8.9–10.9 kg ha−1 per year) in spruce stands than in pine stands (2.7–4.4 kg ha−1 per year).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号