首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A facile one-pot process has been proposed to prepare the novel ethylenediaminetetraacetic acid (EDTA)-modified magnetite nanoparticles (EDTA-MNPs). The bared Fe3O4 magnetite nanoparticles and EDTA-MNPs were characterized using FTIR spectroscopy, TEM, VSM, and X-ray diffraction. The application of the modified magnetite nanoparticles for metal ion uptake was studied using Ni2+ as a model. The adsorption was fast and the equilibrium was established within 5 min, and the adsorption kinetics of Ni2+ onto EDTA-MNPs followed the pseudo second-order chemisorption mechanism. Maximum adsorption capacity for Ni2+ reached as high as 41.3 mg/g at pH 6. The successive adsorption–desorption studies indicated that the EDTA-MNPs kept the adsorption and desorption efficiencies constant over ten cycles. Importantly, EDTA-MNPs were able to remove nearly 100 % of Ni2+ from real water.  相似文献   

2.
This study aims to synthesize 2-hydroxyethyl acrylate (HEA) and 2-acrylamido-2-methylpropane sulfonic (AMPS) acid-based hydrogels by gamma radiation and to investigate their swelling behavior and heavy metal ion adsorption capabilities. The copolymer hydrogels prepared were characterized via scanning electron microscopy, Fourier transformed infrared spectra, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The research showed that the copolymer hydrogel was beneficial for permeation due to its porous structure. In addition, the experimental group A-2-d [70 % water volume ratio and (n (AMPS)/n (HEA))?=?1:1] was an optimal adsorbent. The optimal pH was 6.0 and the optimal temperature was 15 °C. Pb2+, Cd2+, Cu2+, and Fe3+ achieved adsorption equilibriums within 24 h, whereas Cr3+ reached equilibrium in 5 h. Pb2+, Cd2+, Cr3+, and Fe3+ maximum load capacity was 1,000 mg L?1, whereas the Cu2+ maximum capacity was 500 mg L?1. The priority order in the multicomponent adsorption was Cr3+>Fe3+>Cu2+>Cd2+>Pb2+. The adsorption process of the HEA/AMPS copolymer hydrogel for the heavy metal ions was mainly due to chemisorption, and was only partly due to physisorption, according to the pseudo-second-order equation and Langmuir adsorption isotherm analyses. The HEA/AMPS copolymer hydrogel was confirmed to be an effective adsorbent for heavy metal ion adsorption.  相似文献   

3.
硅烷化改性沸石对重金属离子的吸附性能   总被引:2,自引:0,他引:2  
制得一种用于重金属废水处理的新型硅烷化改性沸石吸附剂,成本低、效果显著且稳定。通过对改性沸石表征,分析了改性对沸石结构的影响。结果表明,改性一定程度降低了原沸石的晶体特征,但基本上保持了其结构组成;硅烷化改性成功地在沸石上接枝了氨基。对硅烷化沸石的特性研究,得出硅烷化沸石对Ni2+、Cu2+、Zn2+和Pb2+吸附最佳投加量为1、1、1.6和0.6 g/L,且此时对4种离子的去除率也较好;吸附动力学研究得出,其吸附过程可用二级动力学方程较好地拟合;吸附达到平衡时,4种金属离子的平衡吸附量分别为11.23、17.41、15.45和59.42 mg/g;硅烷化沸石对金属离子的吸附行为更符合Langmuir模型,为化学吸附;在酸性条件下(pH=2~6),硅烷化沸石仍保持一定的吸附能力,具有一定的耐酸性。  相似文献   

4.
The iron(III)-catalyzed autoxidation of sulfur(IV)-oxides results in the formation of two different oxidation products of sulfur(IV): dithionate, S2O62−, and sulfate, SO42−. The yield of these reaction products depends on the experimental conditions. Under the studied conditions ([Fe(III)] : [SIV)] = 1:10, pH = 2–4) dithionate is the minor reaction product. The formation of dithionate is influenced by the initial pH but not by the initial O2 concentration. The presence of CO2+, Mn2+, and Ni2+ have no influence on the yield of dithionate, whereas in the presence of Cr3+ less and, in the presence of Cu2+, no dithionate is formed.  相似文献   

5.
Background, aim, and scope  Dye pollutants are a major class of environmental contaminants. Over 100,000 dyes have been synthesized worldwide and more than 700,000 tons are produced annually and over 5% are discharged into aquatic environments. The adsorption or sorption is one of the most efficient methods to remove dye and heavy metal pollutants from wastewater. However, most of the present sorbents often bear some disadvantages, e.g. low sorption capacity, difficult separation of spoil, complex reproduction, or secondary pollution. Development of novel sorbents that can overcome these limitations is desirable. Materials and methods  On the basis of the chemical coprecipitation of calcium oxalate (CaC2O4), bromopyrogallol red (BPR) was embedded during the growing of CaC2O4 particles. The ternary C2O4 2––BPR–Ca2+ sorbent was yielded by the centrifugation. Its composition was determined by spectrophotometry and AAS, and its structure and morphology were characterized by powder X-ray diffraction (XRD), laser particle-size analysis, and scanning electron microscopy (SEM). The adsorption of ethyl violet (EV) and heavy metals, e.g. Cu(II), Cd(II), Ni(II), Zn(II), and Pb(II) were carried out and their removal rate determined by spectrophotometry and ICP-OES. The adsorption performance of the sorbent was compared with powder activated carbon. The Langmuir isothermal model was applied to fit the embedment of BPR and adsorption of EV. Results  The saturation number of BPR binding to CaC2O4 reached 0.0105 mol/mol and the adsorption constant of the complex was 4.70 × 105 M–1. Over 80% of the sorbent particles are between 0.7 and 1.02 μm, formed by the aggregation of the global CaC2O4/BPR inclusion grains of 30–50 nm size. Such a material was found to adsorb cationic dyes selectively and sensitively. Ethyl violet (EV) was used to investigate the adsorption mechanism of the material. One BPR molecule may just bind with one EV molecule. The CaC2O4/BPR inclusion material adsorbed EV over two times more efficiently than the activated carbon. The adsorption of EV on the CaC2O4/BPR inclusion sorbent was complete in only 5 min and the sedimentation complete in 1 h. However, those of EV onto activated carbon took more than 1.5 and 5 h, respectively. The treatment of methylene blue and malachite green dye wastewaters indicated that only 0.4% of the sorbent adsorbed over 80% of color substances. Besides, the material can also adsorb heavy metals by complexation with BPR. Over 90% of Pb2+, and approximately 50% of Cd2+ and Cu2+, were removed in a high Zn2+-electroplating wastewater when 3% of the material was added. Eighty-six percent of Cu2+, and 60% of Ni2+ and Cd2+, were removed in a high Cd2+-electroplating wastewater. Discussion  The embedment of BPR into CaC2O4 particles responded to the Langmuir isothermal adsorption. As the affinity ligand of Ca2+, BPR with sulfonic groups may be adsorbed into the temporary electric double layer during the growing of CaC2O4 particles. Immediately, C2O4 2– captured the Ca2+ to form the CaC2O4 outer enclosed sphere. Thus, BPR may be released and embedded as a sandwich between CaC2O4 layers. The adsorption of EV on the sorbent obeyed the Langmuir isothermal equation and adsorption is mainly due to the ion-pair attraction between EV and BPR. Different from the inclusion sorbent, the activated carbon depended on the specific surface area to adsorb organic substances. Therefore, the adsorption capacity, equilibrium, and sedimentation time of the sorbent are much better than activated carbon. The interaction of heavy metals with the inclusion sorbent responded to their coordination. Conclusions  By characterizing the C2O4 2––BPR–Ca2+ inclusion material using various modern instruments, the ternary in situ embedment particle, [(CaC2O4)95(BPR)] n 2n, an electronegative, micron-sized adsorbent was synthesized. It is selective, rapid, and highly effective for adsorbing cationic dyes and heavy metals. Moreover, the adsorption is hardly subject to the impact of electrolytes. Recommendations and perspectives  The present work provides a simple and valuable method for preparing the highly effective adsorbent. If a concentrated BPR wastewater was reused as the inclusion reactant, the sorbent will be low cost. By selecting the inclusion ligand with a special structure, we may prepare some particular functional materials to recover the valuable substances from seriously polluted wastewaters. The recommended method will play a significant role in development of advanced adsorption materials. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Y. Xu   《Chemosphere》2001,43(8):1281
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

7.
The removal of Cu2+, Ni2+, and Zn2+ ions from their multi-component aqueous mixture by sorption on activated carbon prepared from date stones was investigated. In the batch tests, experimental parameters were studied, including solution pH, contact time, initial metal ions concentration, and temperature. Adsorption efficiency of the heavy metals was pH-dependent and the maximum adsorption was found to occur at around 5.5 for Cu, Zn, and Ni. The maximum sorption capacities calculated by applying the Langmuir isotherm were 18.68 mg/g for Cu, 16.12 mg/g for Ni, and 12.19 mg/g for Zn. The competitive adsorption studies showed that the adsorption affinity order of the three heavy metals was Cu2+?>?Ni2+?>?Zn2+. The test results using real wastewater indicated that the prepared activated carbon could be used as a cheap adsorbent for the removal of heavy metals in aqueous solutions.  相似文献   

8.
以煤矸石为原料,采用碱熔后水热合成法制备X型分子筛并进行XRD、SEM、BET和Zeta电位分析。研究其对水中Co2+、Cu2+、Cd2+和Cr3+4种离子的吸附性能,包括吸附等温线、吸附动力学以及初始金属离子浓度、pH值对吸附性能的影响。所合成的矸石基X型分子筛的BET比表面积为676.02 m2/g,微孔孔容为0.263 cm3/g。吸附实验表明,矸石基X型分子筛能有效去除上述4种离子,同时实现煤矸石的资源化和金属离子的去除。4种离子的平衡吸附量均随初始浓度的增大而增大,相同条件下平衡吸附量的大小顺序为Cd2+>Cr3+>Cu2+>Co2+。准二级动力学模型能很好地描述4种离子的吸附动力行为。Langmuir模型对Co2+、Cu2+和Cd2+吸附的拟合较Freundlich模型高,说明其主要表现为物理吸附过程。4种离子的吸附速率均由液膜扩散和颗粒内扩散共同控制。  相似文献   

9.
以前期工作中合成的树脂PAANa-TE为吸附剂进行重金属吸附测试,考察吸附剂用量、丙烯酸中和度、吸附时间、溶液pH、初始浓度和吸附温度对树脂吸附重金属离子Cu2+、Pb2+、Cr3+和Co2+性能的影响,用原子吸收分光光度计测定了树脂吸附Cu2+、Pb2+、Cr3+和Co2+后的残留浓度,树脂对4种金属离子的吸附容量分别为21.59、2.39、5.66和4.98 mmol/g,吸附容量大小为Cu2+Cr3+Co2+Pb2+,吸附速率顺序为Cr3+Pb2+Cu2+Co2+。结果表明,该树脂对高浓度重金属离子有较快速,高效率的吸附,吸附过程在100 min左右吸附容量达到最大,并用不同浓度的酸对吸附重金属离子的树脂进行脱附处理,脱附量很小,据此可考虑进一步对金属离子进行回收处理。且脱附率较低,因此,可对工业化和城市化进程所产生的各种化学形态的重金属水体污染物造成的生态环境和质量问题起到重要的改善作用。  相似文献   

10.
11.
研究了辉光放电等离子体降解水中典型的环境内分泌干扰物邻苯二甲酸二丁酯(DBP)及降解过程中过氧化氢(H2O2)的生成规律。考察了电解质种类、共存污染物(甲醇、叔丁醇)及催化剂等条件对DBP降解及H2O2生成的影响。结果表明,在硫酸钠溶液中DBP降解效率和H2O2生成速率最高;甲醇、叔丁醇等共存污染物对DBP降解和H2O2生成有抑制作用;Fe2+,Fe3+和Cu2+对DBP的降解有催化作用,其催化效果为Fe2+>Fe3+>Cu2+。用高效液相色谱、离子色谱及气质联用仪等仪器分析了降解中间产物,提出了可能的降解机理。  相似文献   

12.
Extensive production and application of γ-Fe2O3 magnetic nanoparticles (MNPs) has increased their potential risk on environment and human health. This report illustrates a genetic impact of γ-Fe2O3 magnetic nanoparticles (MNPs) on Escherichia coli (E. coli). After 3000-generation incubation with MNPs addition, obvious genomic variations were revealed by using repetitive extragenic palindromic PCR (rep-PCR) DNA fingerprint technique. The physicochemical interactions between MNPs and bacteria could be responsible for such genomic responses. It was revealed that Fe3+ concentration increased in the medium. Transmission electronic microscopy (TEM) and flow cytometry (FCM) analysis consistently demonstrated the occurrences of adsorption and membranes-internalization of MNPs outside and inside cells. Both increased Fe3+ ion and the uptake of MNPs facilitated Fe binding with proteins and DNA strands, resulting in enhancing the mutation frequency of E. coli. Our results would be of great help to assessing the potential impact of MNPs on human and environment.  相似文献   

13.
ABSTRACT

Water is effective in leaching out Cr6+ from a mixture of paint powders and abrasive blast media. However, acids such as HNO3, HCl, and H2SO4 significantly enhance the leaching procedure. Cr ions in the leaching solutions are successfully removed by electrochemical precipitation. The consumable Fe electrodes generate ferrous ions to cause the reduction of Cr6+ to Cr3+. Cr3+ ions along with Fe2+ and Fe3+ are then removed mainly by precipitation as Cr(OH)3, Fe(OH)2, and Fe(OH)3 near the cathode where OH- ions are generated by water electrolysis. The electrochemical process is capable of discharging low levels of Cr6+, less than 1 mg/L, without pH adjustment.  相似文献   

14.
Aqueous solutions of Fenton's reagent (Fe2+ + H2O2) have been used to effect the total decomposition of the chlorophenols: 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 3,4-dichlorophenol and 2,4,5-trichlorophenol. The mineralization of these chlorinated aromatic substrates to CO2 and free Cl has been studied as a function of [Fe2+] and [HClO4]. Increasing the concentration of Fe2+ enhances the decomposition process, while an increase in the concentration of HClO4, inhibits the reaction. The presence of Fe3+ alone (without any Fe2+) with H2O2 has no effect on the degradation of the chlorophenols. In all cases, the stoichiometric quantity of free Cl was obtained at the completion of the decomposition reaction; but the rates of disappaearance of the chlorophenol and of the formation of the Cl are not similar. This suggests that some chlorinated aliphatic species may be formed as possible intemediates.  相似文献   

15.
More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe3+ (acid-leaching) and Si4+ (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m2 g?1) or Fe2O3@SiO2 (220.9 m2 g?1) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe–O stretching vibration (580 cm?1) and asymmetric Si–O–Si stretching vibrations (1080 cm?1) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20–150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.  相似文献   

16.
ABSTRACT

Fe3+-, Cr3+-, Cu2+-, Mn2+-, Co2+-, and Ni2+-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe3+-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by ~85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

17.
复合纳米材料对土壤重金属离子吸持固化的模拟研究   总被引:1,自引:0,他引:1  
土壤中过量重金属离子可通过食物链和地表水系统危害人群健康。通过土柱淋溶模拟实验,研究了SiO2-Al2O3-Fe2O3等复合纳米材料对土壤溶液中Cu2+、Cd2+、Pb2+、Zn2+和Ni2+的吸持与固化特征。分别向重金属含量4倍于土壤二级标准(GB15618-1995)的土壤中添加0%、4%、6%和10%的复合纳米材料,分析不同深度土壤渗滤液以及土柱上栽培植物不同部位中重金属的含量。结果表明,碱性壤质土壤中重金属向下的迁移量很少;在含4%复合纳米材料土柱中,其吸持固化土壤溶液中63%的Cu、79%的Cd、68%的Pb、89%的Zn和76%的Ni;在含6%复合纳米材料土柱中,其吸持固化土壤溶液中82%的Cu、92%的Cd、76%的Pb、91%的Zn和88%的Ni;再增加土柱中复合纳米材料的含量,其吸持固化效果并不再显著增加。  相似文献   

18.

We demonstrated a method to form magnetic antimicrobial POHABA (poly-N,N′-[(4,5-dihydroxy-1,2-phenylene)bis(methylene)]bisacrylamide)-based core-shell nanostructure by free-radical polymerization of OHABA on the Fe3O4 core surface. The magnetic antimicrobial agent Fe3O4@POHABA can be used in domestic water treatment against bacterial pathogens. The thickness of POHABA shell could be controlled from 10.4 ± 1.2 to 56.3 ± 11.7 nm by the dosage of OHABA. The results of antimicrobial-activity test indicated that POHABA-based core-shell nanostructure had broad-spectrum inhibitory against Gram-negative, Gram-positive bacteria and fungi. The minimum inhibitory concentration (MIC) values of Fe3O4@POHABA nanostructure against Escherichia coli and Bacillus subtilis were both 0.4 mg/mL. Fe3O4@POHABA nanostructures responded to a permanent magnet and were easily recycled. Fe3O4@POHABA nanoparticles retained 100% antimicrobial efficiency for both Gram-negative and Gram-positive bacteria throughout eight recycle procedures.

  相似文献   

19.

Ethyl mercaptans which commonly exist in natural gas need to be removed due to their toxic, odorous, and corrosive properties. Herein, a novel Fe2O3-modified HNbMoO6 nanosheet catalyst (Fe2O3@e-HNbMoO6) was prepared by an exfoliation-impregnation method for the ethyl mercaptans removal. In the heterojunction catalyst, e-HNbMoO6 can be excited by visible light to generate the photogenic charge and has certain adsorption property for ethyl mercaptan with hydrogen bonding (Nb-OH or Mo-OH as the hydrogen bonding donor); Fe2O3 plays the role of accelerating photogenerated electrons and holes, and enhancing the adsorption of ethyl mercaptan with another hydrogen bonding (Fe-OH as the hydrogen bonding donor and receptor). Results showed that the adsorption capacity of Fe2O3@e-HNbMoO6 is 69.9 μmol/g for ethyl mercaptan. In addition, the photocatalytic conversion efficiency of ethyl mercaptan to diethyl disulfide is nearly 100% and it is higher than that of the other Nb-Mo based photocatalysts, such as LiNbMoO6, Fe1/3NbMoO6, Ce1/3NbMoO6, TiO2-HNbMoO6, e-HNbMoO6, CeO2@e-HNbMoO6, and Ag2O@e-HNbMoO6. Under the experimental conditions, the photocatalytic conversion efficiency is greater than the adsorption efficiency over Fe2O3@e-HNbMoO6, and there is no ethyl mercaptan output in the process of adsorption and photocatalytic conversion. Fe2O3@e-HNbMoO6 heterojunction catalyst has practical value and reference significance for purifying methane gas and enhancing photocatalytic conversion of ethyl mercaptan.

  相似文献   

20.
An invertebrate embryo toxicity test with the ampullariid snail, Marisa cornuarietis, to assess the toxicity of pesticides and heavy metals recently was established. Snail embryos were treated with atrazine (100, 1000, 10 000, and 30 000 μg/L), imidacloprid (10 000, 25 000, and 50 000 μg/L), Ni2+ (0.1, 1, 10, and 100 μg/L) or Zn2+ (100, 200, 500, 1000, 2000, and 5000 μg/L). The effect of these substances was examined by monitoring the following endpoints: mortality, formation of tentacles and eyes, heart rate, hatching, and weight after hatching. Effects in term of a significant delay on the formation of both tentacles and eyes were found after treatment with 100 μg/L Ni2+ or 200 μg/L Zn2+. The heart rate was shown to significantly decrease at 25 000 μg/L imidacloprid or 1000 μg/L Zn2+. At 100 μg/L atrazine, 10 μg/L Ni2+, or 1000 μg/L Zn2+ a significant delay in hatching became visible. No significant mortality was observed for the tested concentrations of atrazine, imidacloprid, or Ni2+, while 5000 μg/L Zn2+ resulted in 100% mortality after 10 d. The weight of freshly hatched individuals remained unaffected in all treatments. On the basis of the lowest observed effect concentrations (LOECs) recorded, we could show the M. cornuarietis embryo toxicity test (MariETT) to react up to three orders of magnitude more sensitive (for metals) and at least one order of magnitude more sensitive (for the tested organics) than the established Danio rerio embryo test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号