首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 801 毫秒
1.
The purpose of this work is to contribute to the understanding of the photochemical air pollution in central-southern of the Iberian Peninsula, analysing the behaviour and variability of oxidant levels (OX?=?O3?+?NO2), measured in a polluted area with the highest concentration of heavy industry in central Spain. A detailed air pollution database was observed from two monitoring stations. The data period used was 2008 and 2009, around 210,000 data, selected for its pollution and meteorological statistics, which are very representative of the region. Data were collected every 15 min, however hourly values were used to analyse the seasonal and daily ozone, NO, NO2 and OX cycles. The variation of OX concentrations with NO x is investigated, for the first time, in the centre of the Iberian Peninsula. The concentration of OX was calculated using the sum of a NO x -independent ‘regional’ contribution (i.e. the O3 background), and a linearly NO x -dependent ‘local’ contribution. Monthly dependence of regional and local OX concentration was observed to determine when the maximum values may be expected. The variation of OX concentrations with levels of NO x was also measured, in order to pinpoint the atmospheric sources of OX in the polluted areas. The ratios [NO2]/[OX] and [NO2]/[NO x ] vs. [NO x ] were analysed to find the fraction of OX in the form of NO2, and the possible source of the local NO x -dependent contribution, respectively. The progressive increase of the ratio [NO2]/[OX] with [NO x ] observed shows a greater proportion of OX in the form of NO2 as the level of NO x increases. The higher measured values in the ratio [NO2]/[NO x ] should not be attributed to NO x emissions by vehicles; they could be explained by industrial emission, termolecular reactions or formaldehyde and HONO directly emitted by vehicles exhausts. We also estimate the rate of NO2 photolysis, J NO2?=?0.18–0.64 min?1, a key atmospheric reaction that influence O3 production and then the regional air quality. The first surface plot study of annual variation of the daily mean oxidant levels, obtained for this polluted area may be used to improve the atmospheric photochemical dynamic in this region of the Iberian Peninsula where there are undeniable air quality problems.  相似文献   

2.
Significant differences occur between results of chamber work conducted outdoors versus work conducted indoors under constant light intensity. Under outdoor conditions at constant [NOX]O, lower [HC]o resulted in lower [NO2]max and NO2 dosage during the daylight hours. The percent reduction in [NO2]max was a function of the [HC]0 reduction and the [NOX]O level. Under all experimental conditions the 10 hour N02 average to maximum N02 concentration ratio appeared to be constant at 0.73 during the daylight hours. A regression equation relating [NOx]max to [NOX]O, [HC]O, and measures of solar radiation accounted for 92% of the variance in the data. Although there is unavoidable confoundment between [HC]0 and solar radiation, the HC term in this regression equation can introduce ±20 % change in [N02]max - This variation can be partially offset or enhanced by variations in solar radiation.  相似文献   

3.
Reduced ozone by air filtration consistently improved grain yield in wheat   总被引:1,自引:0,他引:1  
This study considered effects of reduced [O3] on wheat yield. Open-top chamber charcoal filtered air treatments were compared with non-filtered treatments for field-grown wheat. 30 experiments meeting requirements were found, representing nine countries in North America, Europe and Asia. 26 experiments reported improved yield and 4 experiments reduced yield by filtration, a significant positive effect. Average yield improvement was 9%. Average daytime [O3] was reduced by filtration from 35 to 13 nmol mol−1. Filtration efficiency was 63% for O3 and 56% for SO2. For NOx it was observed that NO2 was reduced and NO increased by filtration. Thus, filters convert NO2 to NO. Most experiments reported low or very low [SO2] and [NOx]. Thus, O3 can be concluded to be the main phytotoxic component in the experiments. Elevated [NO2] was observed in one experiment. The conclusion is that current [O3] over large parts of the world adversely affect wheat yield.  相似文献   

4.
Abstract

The ozone (O3) sensitivity to nitrogen oxides (NOx, or nitric oxide [NO] + nitrogen dioxide [NO2]) versus volatile organic compounds (VOCs) in the Mexico City metropolitan area (MCMA) is a current issue of scientific controversy. To shed light on this issue, we compared measurements of the indicator species O3/NOy (where NOy represents the sum of NO + NO2 + nitric acid [HNO3] + peroxyacetyl nitrate [PAN] + others), NOy, and the semiempirically derived O3/NOz surrogate (where NOz surrogate is the derived surrogate NOz, and NOz represents NOx reaction products, or NOy – NOx) with results of numerical predictions reproducing the transition regimes between NOx and VOC sensitivities. Ambient air concentrations of O3, NOx, and NOy were measured from April 14 to 25, 2004 in one downwind receptor site of photo-chemically aged air masses within Mexico City. MCMA-derived transition values for an episode day occurring during the same monitoring period were obtained through a series of photochemical simulations using the Multiscale Climate and Chemistry Model (MCCM). The comparison between the measured indicator species and the simulated spatial distribution of the indicators O3/NOy, O3/NOz surrogate, and NOy in MCMA suggest that O3 in this megacity is likely VOC-sensitive. This is in opposition to past studies that, on the basis of the observed morning VOC/NOx ratios, have concluded that O3 in Mexico City is NOx-sensitive. Simulated MCMA-derived sensitive transition values for O3/NOy, hydrogen peroxide (H2O2)/HNO3, and NOy were found to be in agreement with threshold criteria proposed for other regions in North America and Europe, although the transition crossover for O3/NOz and O3/HNO3 was not consistent with values reported elsewhere. An additional empirical evaluation of weekend/weekday differences in average maximum O3 concentrations and 6:00- to 9:00-a.m. NOx and NO levels registered at the same site in April 2004 indirectly confirmed the above results. A preliminary conclusion is that additional reductions in NOx emissions in MCMA might cause an increase in presently high O3 levels.  相似文献   

5.
We evaluated the effect of a 20% reduction in the rate constant of the reaction of the hydroxyl radical with nitrogen dioxide to produce nitric acid (OH+NO2→HNO3) on model predictions of ozone mixing ratios ([O3]) and the effectiveness of reductions in emissions of volatile organic compounds (VOC) and nitrogen oxides (NOx) for reducing [O3]. By comparing a model simulation with the new rate constant to a base case scenario, we found that the [O3] increase was between 2 and 6% for typical rural conditions and between 6 and 16% for typical urban conditions. The increases in [O3] were less than proportional to the reduction in the OH+NO2 rate constant because of negative feedbacks in the photochemical mechanism. Next, we used two different approaches to evaluate how the new OH+NO2 rate constant changed the effectiveness of reductions in emissions of VOC and NOx: first, we evaluated the effect on [O3] sensitivity to small changes in emissions of VOC (d[O3]/dEVOC) and NOx (d[O3]/dENOx); and secondly, we used the empirical kinetic modeling approach to evaluate the effect on the level of emissions reduction necessary to reduce [O3] to a specified level. Both methods showed that reducing the OH+NO2 rate constant caused control strategies for VOC to become less effective relative to NOx control strategies. We found, however, that d[O3]/dEVOC and d[O3]/dENOx did not quantitatively predict the magnitude of the change in the control strategy because the [O3] response was nonlinear with respect to the size of the emissions reduction. We conclude that model sensitivity analyses calculated using small emissions changes do not accurately characterize the effect of uncertainty in model inputs (in this case, the OH+NO2 rate constant) on O3 attainment strategies. Instead, the effects of changes in model inputs should be studied using large changes in precursor emissions to approximate realistic attainment scenarios.  相似文献   

6.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

7.
Abstract

A computer model called the Ozone Risk Assessment Model (ORAM) was developed to evaluate the health effects caused by ground-level ozone (O3) exposure. ORAM was coupled with the U.S. Environmental Protection Agency’s (EPA) Third-Generation Community Multiscale Air Quality model (Models-3/CMAQ), the state-of-the-art air quality model that predicts O3 concentration and allows the examination of various scenarios in which emission rates of O3 precursors (basically, oxides of nitrogen [NOx] and volatile organic compounds) are varied. The principal analyses in ORAM are exposure model performance evaluation, health-effects calculations (expected number of respiratory hospital admissions), economic valuation, and sensitivity and uncertainty analysis through a Monte Carlo simulation. As a demonstration of the system, ORAM was applied to the eastern Tennessee region, and the entire O3 season was simulated for a base case (typical emissions) and three different emission scenarios. The results indicated that a synergism occurs when reductions in NOx emissions from mobile and point sources were applied simultaneously. A 12.9% reduction in asthma hospital admissions is expected when both mobile and point source NOx emissions are reduced (50 and 70%, respectively) versus a 5.8% reduction caused by mobile source and a 3.5% reduction caused by point sources when these emission sources are reduced individually.  相似文献   

8.
Because investigations of PAN at higher southern latitudes are very scarce, we measured surface PAN concentrations for the first time in Antarctica. During the Photochemical Experiment at Neumayer (PEAN'99) campaign mean surface PAN mixing ratios of 13±7 pptv and maximum values of 48 pptv were found. When these PAN mixing ratios were compared to the sum of NOx and inorganic nitrate they were found to be equal or higher. Low ambient air temperatures and low PAN concentrations caused a slow homogeneous PAN decomposition rate of approximately 5×10−2 pptv h−1. These slow decay rates were not sufficient to firmly establish the simultaneously observed NOx concentrations. In addition, low concentration ratios of [HNO3]/[NOx] imply that the photochemical production of NOx within the snow pack can influence surface NOx mixing ratios in Antarctica. Alternate measurements of PAN mixing ratios at two different heights above the snow surface were performed to derive fluxes between the lower troposphere and the underlying snow pack using calculated friction velocities. Most of the concentration differences were below the precision of the measurements. Therefore, only an upper limit for the PAN flux of ±1×1013 molecules m−2 s−1 without a predominant direction can be estimated. However, PAN fluxes below this limit can still influence both the transfer of nitrogen compounds between atmosphere and ice, and the PAN budget in higher southern latitudes.  相似文献   

9.
The purpose of this work is to investigate the behaviour and variability of oxidant levels (OX?=?NO2?+?O3), for the first time, in a rural coastal area in the southwest of the Iberian Peninsula, affected by several air masses types. Detailed database (built-up over the years 2008 to 2011, and containing around 500,000 data) from the Atmospheric Sounding Station “El Arenosillo” was used. The observed daily cycles of NO x and OX were influenced by air masses coming from industrial and urban area. It can be seen that the concentration of OX is made up of a NO x -independent ‘regional’ contribution (i.e. the O3 background), and a linearly NO x -dependent ‘local’ contribution from primary emissions, such as traffic. The local emission is very low in this area. Also, the regional contribution is similar to unpolluted sites and presents seasonal variation, being higher in May. However, our measurements showed that the proportion of OX in the form of NO2 increases with the increase in NO x concentration during the day. The higher proportion of NO2 observed at night must be due to the conversion of NO to NO2 by the NO?+?O3 reaction. With regards to the source of the local NO x -dependent contribution, it may be attributed to industrial emission, or the termolecular reaction 2NO?+?O2?=?2NO2, at high-NO x levels and stagnant air during several days. Finally, we estimated the photolysis rate of NO2, J NO2, an important key atmospheric reaction coupled with ozone. We also present surface plots of annual variation of the daily mean NO x and OX levels, which indicate that oxidants come from transport processes instead of local emissions associated as local photochemistry.  相似文献   

10.
Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3 trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3 concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2 concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3 photochemistry. The linear O3–NO2 relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3 with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3 concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3 concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3 reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3 with emissions suggest that O3 is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3 change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3 production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3.

Implications:?This analysis demonstrates empirical relations between O3 and precursors based on long term trends in U.S. locations. The results indicate that ground-level O3 concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3 and NO2 concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.  相似文献   

11.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


12.
Based on hourly measurements of NOx NO2 and O3 and meteorological data, an ordinary least squares (OLS) model and a first-order autocorrelation (AR) model were developed to analyse the regression and prediction of NOx and NO2 concentrations in London. Primary emissions and wind speed are the most important factors influencing NOx concentrations; in addition to these two, reaction of NO with O3 is also a major factor influencing NO2 concentrations. The AR model resulted in high correlation coefficients (R > 0.95) for the NOx and NO2 regression based on a whole year's data, and is capable of predicting NO2 (R = 0.83) and NOx (R = 0.65) concentrations when the explanatory variables were available. The analysis of the structure of regression models by Principal Component Analysis (PCA) indicates that the regression models are stable. The results of the OLS model indicate that there was an exceptional NO2 source, other than primary emission and reaction of NO with O3, in the air pollution episode in London in December 1991.  相似文献   

13.
Aircraft observations from three recent missions (STRAT, SUCCESS, SONEX) are synthesized into a theoretical analysis of the factors controlling the concentrations of HOx radicals (HOx=OH+peroxy) and the larger reservoir family HOy (HOy=HOx+2H2O2+2CH3OOH+HNO2+HNO4) in the upper troposphere. Photochemical model calculations capture 66% of the variance of observed HOx concentrations. Two master variables are found to determine the variance of the 24 h average HOx concentrations: the primary HOx production rate, P(HOx), and the concentration of nitrogen oxide radicals (NOx=NO+NO2). We use these two variables as a coordinate system to diagnose the photochemistry of the upper troposphere and map the different chemical regimes. Primary HOx production is dominated by the O(1D)+H2O reaction when [H2O]>100 ppmv, and by photolysis of acetone (and possibly other convected HOx precursors) under drier conditions. For the principally northern midlatitude conditions sampled by the aircraft missions, the HOx yield from acetone photolysis ranges from 2 to 3. Methane oxidation amplifies the primary HOx source by a factor of 1.1–1.9. Chemical cycling within the HOx family has a chain length of 2.5–7, while cycling between the HOx family and its HOy reservoirs has a chain length of 1.6–2.2. The number of ozone molecules produced per HOy molecule consumed ranges from 4 to 12, such that ozone production rates vary between 0.3 and 5 ppbv d−1 in the upper troposphere. Three chemical regimes (NOx-limited, transition, NOx-saturated) are identified to describe the dependence of HOx concentrations and ozone production rates on the two master variables P(HOx) and [NOx]. Simplified analytical expressions are derived to express these dependences as power laws for each regime. By applying an eigenlifetime analysis to the HOx–NOx–O3 chemical system, we find that the decay of a perturbation to HOy in the upper troposphere (as from deep convection) is represented by four dominant modes with the longest time scale being factors of 2–3 times longer than the steady-state lifetime of HOy.  相似文献   

14.
Monitoring data from the UK Automatic Urban and Rural Network are used to investigate the relationships between ambient levels of ozone (O3), nitric oxide (NO) and nitrogen dioxide (NO2) as a function of NOx, for levels ranging from those typical of UK rural sites to those observed at polluted urban kerbside sites. Particular emphasis is placed on establishing how the level of ‘oxidant’, OX (taken to be the sum of O3 and NO2) varies with the level of NOx, and therefore to gain some insight into the atmospheric sources of OX, particularly at polluted urban locations. The analyses indicate that the level of OX at a given location is made up of NOx-independent and NOx-dependent contributions. The former is effectively a regional contribution which equates to the regional background O3 level, whereas the latter is effectively a local contribution which correlates with the level of primary pollution. The local oxidant source has probable contributions from (i) direct NO2 emissions, (ii) the thermal reaction of NO with O2 at high NOx, and (iii) common-source emission of species which promote NO to NO2 conversion. The final category may include nitrous acid (HONO), which appears to be emitted directly in vehicle exhaust, and is potentially photolysed to generate HOx radicals on a short timescale throughout the year at southern UK latitudes. The analyses also show that the local oxidant source has significant site-to-site variations, and possible reasons for these variations are discussed. Relationships between OX and NOx, based on annual mean data, and fitted functions describing the relative contributions to OX made by NO2 and O3, are used to define expressions which describe the likely variation of annual mean NO2 as a function of NOx at 14 urban and suburban sites, and which can take account of possible changes in the regional background of O3.  相似文献   

15.
This paper summarizes the results of a yearlong continuous measurements of gaseous pollutants, NO, NO2, NOx and O3 in the ambient air at Kathmandu valley. Measured concentration of the pollutants in study area is a function of time. NO, NO2 and O3 peak occurred in succession in presence of sunlight. At the time of maximum O3 concentration most of the NOx are utilized. The diurnal cycle of ground level ozone concentrations, revealed mid-day peak with lower nocturnal concentrations and inverse relationship exists between O3 and NOx, which are evidences of photochemical O3 formation. The observed ground level ozone during monsoon is slight lower than the pre-monsoon value. Further, lack of rainfall and higher temperature, solar radiation in the pre-monsoon have given rise to the gradual build up of ozone and it is lowest during winter. Ground level ozone concentrations measured during bandha (general strike) and weekend are 19% and 13% higher than those measured during weekdays. The most effective ozone abatement strategy for Kathmandu Valley may be control of NOx emissions.  相似文献   

16.
We have used a three-dimensional off-line chemical transport model (CTM) to assess the impact of lightning emissions in the free troposphere both on NOx itself and on other chemical species such as O3 and OH. We have investigated these effects using two lightning emission scenarios. In the first, lightning emissions are coupled in space and time to the convective cloud top height calculated every 6 h by the CTM's moist convection scheme. In the second, lightning emissions are calculated as a constant, monthly mean field. The model's performance against observed profiles of NOx and O3 in the Atlantic and Pacific ocean improves significantly when lightning emissions are included. With the inclusion of these emissions, the CTM produces a significant increase in the NOx concentrations in the upper troposphere, where the NOx lifetime is long, and a smaller increase in the lower free troposphere, where the surface NOx sources dominate. These changes cause a significant increase in the O3 production in the upper troposphere and hence higher calculated O3 there. The model indicates that lightning emissions cause local increases of over 50 parts per 1012 by volume (pptv) in NOx, 200 pptv in HNO3 and 20 parts per 109 by volume (ppbv) (>40%) in O3. In addition, a smaller increase of O3 in the lower troposphere occurs due to an increase in the downward transport of O3. The O3 change is accompanied by an increase in OH which is more pronounced in the upper troposphere with a corresponding reduction in CO. The method of emission employed in the model does not appear to have a significant effect globally. In the upper troposphere (above about 300 hPa) NOx concentrations are generally lower with monthly mean emissions, because of the de-coupling of emissions from the model's convection scheme, which vents NOx aloft more efficiently in the coupled scheme. Below the local convective outflow altitude, NOx concentrations are larger when using the monthly mean emissions than when coupled to the convection scheme, because the more dilute emissions, and nighttime emissions, lead to a slower NOx destruction rate. Only minor changes are predicted in the monthly average fields of O3 if we emit lightning as a monthly constant field. However, the method of emission becomes important when we make a direct comparison of model results with time varying data. These differences should be taken into account when a direct comparison of O3 with measurements collected at particular times and locations is attempted.  相似文献   

17.
Abstract

Data from the U.S. Environmental Protection Agency Air Quality System, the Southeastern Aerosol Research and Characterization database, and the Assessment of Spatial Aerosol Composition in Atlanta database for 1999 through 2002 have been used to characterize error associated with instrument precision and spatial variability on the assessment of the temporal variation of ambient air pollution in Atlanta, GA. These data are being used in time series epidemiologic studies in which associations of acute respiratory and cardiovascular health outcomes and daily ambient air pollutant levels are assessed. Modified semivariograms are used to quantify the effects of instrument precision and spatial variability on the assessment of daily metrics of ambient gaseous pollutants (SO2, CO, NOx, and O3) and fine particulate matter ([PM2.5] PM2.5 mass, sulfate, nitrate, ammonium, elemental carbon [EC], and organic carbon [OC]). Variation because of instrument imprecision represented 7–40% of the temporal variation in the daily pollutant measures and was largest for the PM2.5 EC and OC. Spatial variability was greatest for primary pollutants (SO2, CO, NOx, and EC). Population–weighted variation in daily ambient air pollutant levels because of both instrument imprecision and spatial variability ranged from 20% of the temporal variation for O3 to 70% of the temporal variation for SO2 and EC. Wind rose plots, corrected for diurnal and seasonal pattern effects, are used to demonstrate the impacts of local sources on monitoring station data. The results presented are being used to quantify the impacts of instrument precision and spatial variability on the assessment of health effects of ambient air pollution in Atlanta and are relevant to the interpretation of results from time series health studies that use data from fixed monitors.  相似文献   

18.
Measurement of NO2 and NO has been carried out in Piedmont, N. C. and in the southern Appalachian Mountains. Average values for the Piedmont were: continuous NO2 measured 30 ft above surface, 0.76 pphm (14.3 μg/m3), 1 20 ft, 0.61 pphm (11.5 μg/m3); simultaneous values (also Piedmont) (2-hr discrete samples) taken at an earlier time at 4 ft, NO2, 0.56 pphm (10.6 μg/m3), NO, 0.19 pphm (2.34 μg/m3). The mountain top values (5120 ft, 1573 m) were: NO2, 0.46 pphm (6.4 μg/m3), NO, 0.26 pphm (2.72 μg/m3). The results of this study furnish further proof that tropospheric NO and NO2 are produced at the surface of the earth. Data obtained are consistent with the belief that a major sink for NOx is reaction with O3 and ultimate conversion to nitrate.

Ozone values frequently increased and NOx values decreased ahead of cold fronts, probably as a result of deep vertical mixing. Also, in small scale turbulence the changes in NOx values and in the O3 values tended to be “out of phase,” i.e., as O3 concentration increased, NOx concentration decreased and vice versa. Values of NOx from Green Knob, N. C. (mountain top) also tended to be higher at times when O3 values were lowest.

The NO2 hourly average values in Piedmont, N. C, demonstrated a diurnal cycle reminiscent of diurnal urban changes. An early morning peak was followed by a minimum in mid-afternoon. Next, the values rose to a broad evening peak and then decreased slowly during the night. Reported urban concentrations are usually about ten times those found in Piedmont, N. C.  相似文献   

19.
Photochemical production of ozone and control strategy for Southern Taiwan   总被引:3,自引:0,他引:3  
An observation-based method (OBM) is developed to evaluate the ozone (O3) production efficiency (O3 molecules produced per NOx molecule consumed) and O3 production rate (P(O3)) during a field campaign in southern Taiwan. The method can also provide an estimate of the concentration of OH. A key step in the method is to use observed concentrations of two aromatic hydrocarbons, namely ethylbenzene and m,p-xylene, to estimate the degree of photochemical processing and amounts of photochemically consumed NOx and NMHCs by OH. In addition, total oxidant (O3+NO2) instead of O3 itself turns out to be very useful for representing ozone production in the OBM approach. The average O3 production efficiency during the field campaign in Fall (2003) is found to be about 10.2±3.9. The relationship of P(O3) with NOx is examined and compared with a one-dimensional (1D) photochemical model. Values of P(O3) derived from the OBM are slightly lower than those calculated in the 1D model. However, OH concentrations estimated by the OBM are about a factor of 2 lower than the 1D model. Fresh emissions, which affect the degree of photochemical processing appear to be a major cause of the underestimate. We have developed a three-dimensional (3D) OBM O3 production diagram that resembles the EKMA ozone isopleth diagram to study the relationship of the total oxidant versus O3 precursors. The 3D OBM O3 production diagram suggests that reducing emissions of NMHCs are more effective in controlling O3 than reducing NOx. However, significant uncertainties remain in the OBM, and considerable more work is required to minimize these uncertainties before a definitive control strategy can be reached. The observation-based approach provides a good alternative to measuring peroxy radicals for evaluating the production of O3 and formulating O3 control strategy in urban and suburban environments.  相似文献   

20.
In the OZIPP (ozone isopleth plotting package, developed by United States Environmental Protection Agency) a number of model specific assumptions with respect to chemical and physical processes are made. These assumptions are introduced into an alternative model developed at AERE Harwell, United Kingdom, in which a detailed chemistry and mixture of organic emissions is included. The impact on the AERE Harwell model results of the assumptions made in OZIPP of omitting ground removal of ozone (O3) and peroxyacetylnitrate (PAN) and of employing an incomplete PAN chemistry and adopting a reaction rate coefficient of the key reaction NO + HO2 → NO2 + OH which is a factor 10 lower than the accepted value, are discussed. The composition of the organic emissions is an important model parameter, and it is shown how grouping of nonmethane hydrocarbon (NMHC) emissions into a small group of NMHC thought to be representative, often implies that O3 and other pollutants are overestimated. The O3 isopleth diagram for London constructed using the AERE Harwell model gives a somewhat different picture from that obtained with OZIPP. OZIPP in general predicts that NOx control or combined hydrocarbon(HC) and NOx control is efficient with respect to O3 reduction whilst the AERE Harwell model predicts that HC control alone usually is more efficient than combined HC and NOx control. Furthermore NOx control alone may often increase the O3 burden downwind in the AERE Harwell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号