首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
新型类Fenton催化剂用于酸性红B染料废水处理的研究   总被引:3,自引:0,他引:3  
为了解决Fenton试剂反应前后需要调节pH值、催化剂不能重复利用的问题,本实验以酸性红B溶液作为模拟染料废水,探索以硫铁矿烧渣作为非均相催化剂进行类Fenton反应的催化活性,研究了H2O2投加量、催化剂投加量、pH值、反应时间对酸性红B去除效果的影响。在双氧水(H2O2质量分数为30%)投加量为30 mL/L、催化剂投加量为30 g/L、pH值在1~11范围内,反应4 h,浓度为200 mg/L的酸性红B去除率均达到95%以上,且反应后pH值在中性范围。实验结果表明,该非均相类Fenton反应体系对pH的适用范围广,且催化剂易于沉淀分离,反应数次后依然保持较高催化活性,能重复利用。  相似文献   

2.
非均相UV/Fenton氧化法降解水中六氯苯的研究   总被引:8,自引:4,他引:4  
采用超声辐照促进浸渍法制备了非均相UV/Fenton催化剂Fe/Al2O3,并对其进行了表征.以制备的催化剂对水中六氯苯进行非均相UV/Fenton法氧化降解.考察了铁的负载量、初始pH、H2O2投加量、催化剂投加量和反应时间对六氯苯降解效果的影响,并探讨了六氯苯的降解动力学规律.结果表明,制备的催化剂表面活性组分分散均匀,对六氯苯具有较高的催化活性和重复利用性.非均相UV/Fenton法降解六氯苯的最佳实验条件为:铁的负载量为2%,废水初始pH为3,H2O2和Fe/Al2O3催化剂的投加量分别为34 mg/L和150 mg/L,反应时间为20 min.在此条件下,浓度为500μg/L的六氯苯降解效率达94.5%.HCB的降解反应动力学规律可用Langmuir-Hinshwood方程很好地描述.六氯苯在催化剂表面的吸附常数为1.962 L/mg,表面反应速率常数为0.08 mg/(L·min).  相似文献   

3.
以三氯生为目标污染物,研究了黄铁矿催化H2O2非均相类Fenton体系对污染物的去除效果,并利用SEM、EDS等手段对天然黄铁矿进行了表征。考察了催化剂、H2O2投加量、溶液初始pH、反应时间等重要因素对催化氧化反应的影响。在H2O2投加量5 mg/L,黄铁矿用量0.1 g/L,溶液初始pH为8,反应10 min后,三氯生的去除率达90%以上。相对于传统Fenton反应,pH对本非均相催化反应的影响较小,在2~10的pH范围内,仍有较高的催化活性。利用GC-MS分析显示,三氯生降解过程能够产生包括2,4-二氯苯酚在内的多种中间产物。  相似文献   

4.
以浸渍法制备的新型纳米Fe3O4/Zr O2为催化剂,3,4-二氯三氟甲苯(3,4-DCBTE)为目标污染物,用Fe3O4/Zr O2-H2O2非均相类Fenton体系对目标污染物进行降解,考察催化剂的催化效果和温度、pH、H2O2投加量和掺杂比等因素对催化剂催化效果的影响。结果表明,以纳米Fe3O4/Zr O2作为催化剂的非均相类Fenton体系对3,4-二氯三氟甲苯的处理效果极佳;随着温度的升高,纳米Fe3O4/Zr O2的催化效果不断提高;当pH降低时,催化剂的催化效果有明显提升,原始pH(pH=5.7)时反应去除效果最佳,去除率可达88.6%;催化剂用量的增加同样可以提高3,4-二氯三氟甲苯的降解效率;催化剂中Fe3O4∶Zr O2的物质的量比为1∶2时效果较其他掺杂比的催化剂效果更好,去除率最终可以达到96.82%;当H2O2投加量增加时,3,4-二氯三氟甲苯的降解效率先提高后降低,投加量为0.3 m L时去除效果最好,几乎可以完全去除目标有机物。以Fe3O4/Zr O2-H2O2非均相类Fenton体系处理3,4-二氯三氟甲苯时,目标污染物的降解符合一级反应动力学。  相似文献   

5.
硫铁矿烧渣催化类Fenton法深度处理维生素C废水   总被引:1,自引:0,他引:1  
采用硫铁矿烧渣协同Fe2+催化H2O2的类Fenton法深度处理维生素C制药废水,通过正交实验考察FeSO4投加量、H2O2投加量、搅拌反应时间、曝气时间等因素对低浓度难降解有机物去除的影响程度,并结合单因素实验确定最佳反应条件。结果表明:(1)正交实验中,各因素对催化氧化反应效果的影响程度依次为H2O2投加量搅拌反应时间曝气时间FeSO4投加量;(2)单因素实验中,最佳反应条件为烧渣投加量10g/L、H2O2投加量4.9mmol/L、FeSO4投加量3.9mmol/L、搅拌反应时间20min、曝气时间20min、絮凝沉淀部分聚丙烯酰胺(PAM)投加量5mg/L。在此条件下,COD去除率最高达63.21%。  相似文献   

6.
采用UV/Fenton法对橡胶促进剂废水进行预处理.当原水COD约为3000 mg/L时,COD去除率可达65%以上,并得到最佳操作条件为:H2O2投加量为8 mL/L,Fe2 投加量为0.8 g/L,反应时间为30 min,pH=5;同时得到Fenton试剂处理该废水的最佳条件为:H2O2投加量为10 mL/L,Fe2 投加量为0.966 g/L,反应时间为30 min,pH=5;单独UV作用的最佳工艺条件为:反应时间为20 min,pH=5;并就3种处理方法进行了比较,发现UV对Fenton试剂处理橡胶促进剂废水具有一定促进作用.反应前后的紫外光谱说明,经UV/Fenton或Fenton反应后原水中的苯胺、硝基苯等物质已得到了彻底的氧化分解.  相似文献   

7.
CuO/γ-Al2O3类Fenton试剂是降解丁基黄药的优良试剂。该试剂与传统的Fenton试剂相比,提高了反应的pH值,可在较高pH(4~5)条件下反应,而传统的Fenton试剂的适宜pH值一般在3以下。采用单因素实验和正交实验相结合的方法研究了pH、催化剂投加量、过氧化氢投加量以及反应时间对丁基黄药降解效果的影响,并对催化剂的使用寿命进行了探讨。研究结果表明,反应的最佳条件为:pH为4~5,催化剂投加量为6 g/L,过氧化氢用量为30 mg/L,反应30min。在此反应条件下,丁基黄药的降解率达98%以上;影响丁基黄药降解效果的因素大小顺序为:pH>反应时间>H2O2用量>催化剂投加量,其中pH对CuO/γ-Al2O3类Fenton试剂降解丁基黄药的影响最为显著。  相似文献   

8.
CuO/γ-Al_2O_3类Fenton试剂降解丁基黄药   总被引:1,自引:0,他引:1  
CuO/γ-Al2O3类Fenton试剂是降解丁基黄药的优良试剂。该试剂与传统的Fenton试剂相比,提高了反应的pH值,可在较高pH(4~5)条件下反应,而传统的Fenton试剂的适宜pH值一般在3以下。采用单因素实验和正交实验相结合的方法研究了pH、催化剂投加量、过氧化氢投加量以及反应时间对丁基黄药降解效果的影响,并对催化剂的使用寿命进行了探讨。研究结果表明,反应的最佳条件为:pH为4~5,催化剂投加量为6 g/L,过氧化氢用量为30 mg/L,反应30min。在此反应条件下,丁基黄药的降解率达98%以上;影响丁基黄药降解效果的因素大小顺序为:pH〉反应时间〉H2O2用量〉催化剂投加量,其中pH对CuO/γ-Al2O3类Fenton试剂降解丁基黄药的影响最为显著。  相似文献   

9.
研究了在超声波、Fenton不同体系中邻苯二甲酸二甲酯(DMP)和壬基酚(NP)的降解效果.通过正交实验得到超声波/Fenton工艺各个因素影响程度的大小为:H2O2投加量>初始pH>反应时间>Fe2+投加量>超声功率.最后得到降解250mL质量浓度为100 μg/L的DMP的最佳条件:H2 O2投加量为2 mmol/L、Fe2+投加量为0.40 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到85.96%;降解250mL质量浓度为100 μg/L的NP的最佳条件:H2O2投加量为4mmol/L、Fe2+投加量为0.50 mmol/L、初始pH为3.00、超声功率为1 800W、反应时间为120 min,降解率可达到78.70%.  相似文献   

10.
采用UV/Fenton高级氧化技术对酸性红B模拟废水进行处理,当进水浓度为400mg/L时,确定了各影响因素的最佳投加量:H2O2投加量为2 mL/L,Fe2 投加量为0.08g/L,最佳pH值为4;并采用一级动力学公式对酸性红B降解速率进行拟合,研究了反应条件对速率常数的影响.最后通过对单独UV法、单独Fenton法和UV/Fenton法3种处理方法效果的比较,发现UV与Fenton试剂具有协同作用.  相似文献   

11.
UV/Fenton, near-UV-visible/Fenton, dark Fenton, and H2O2/UV reactions have been used to treat simulated dyehouse effluents representing wastewater from the textile dyeing and rinsing process. Experiments were carried out in a lab - scale photochemical reactor using concentrations of 0.5–25 mM H2O2, 0.04-0.5 mM Fe2+-ion and different dilutions of textile wastewater. To assess the extent of mineralization, decolourization kinetics and the effect of different fight sources on treatment efficiency, DOC, optical density at 254 nm and 600 nm wavelength and residual H2O2 concentrations were measured during the course of the advanced oxidation reactions. Comparative evaluation of the obtained results revealed that the decolourization rate increased with applied H2O2 and Fe2+-ion dose as well as the strength of the synthetic textile wastewater. The best results were obtained by the near - UV/visible/Fenton process with a decolourization rate constant of 1.57 min−1, a UV254nm reduction of 97% and a DOC removal of 41% at relatively low doses of the H2O2 oxidant and Fe2+-ion catalyst within 60 min treatment time.  相似文献   

12.
针对企业硝基氯苯装置产生的高毒性、难降解的硝基苯类废水,开发出全混态零价铁-芬顿组合预处理工艺,并分别优化了零价铁还原和芬顿氧化的工艺条件。结果表明,pH为2.0、零价铁投加量为220 mg/L时,废水中硝基苯类物质的去除率可达98.5%以上。出水pH约为3.0,继续投加3000 mg/L的H2O2,Fe2+投加比按C(Fe2+,mg/L):C(H2O2,mg/L)=1:10,1 h内COD去除率可达90%以上,且B/C由0.08提高到0.45。可见该组合预处理工艺可大幅削减废水毒性、改善可生化性,且直接运行成本仅为26.28元/吨,具有良好的环境和经济效益。  相似文献   

13.
Glucose oxidase is a well-known enzyme that catalyzes the oxidation of β-d-glucose to produce gluconic acid and hydrogen peroxide. Fenton reaction is a powerful oxidation technology used for the oxidation of groundwater pollutants. For the application of Fenton reaction in groundwater remediation, successful operation of Fenton reaction near neutral pH, and on-site generation of both H2O2 and chelate will be beneficial. The focus of this experimental study was to couple the glucose oxidation reaction with chelate-based Fenton reaction. The idea was to use the hydrogen peroxide and chelate gluconic acid generated during glucose oxidation for the dechlorination of 2,4,6-trichlorophenol (TCP) by Fenton reaction. The oxidation of glucose was achieved using the enzyme in free and immobilized forms. The rate of production of hydrogen peroxide was determined for each system, and was used to estimate the time required for complete consumption of glucose during the process, thus avoiding any traces of glucose in the Fenton reaction. In the case of free enzyme reaction, separation of the enzyme was achieved using an ultrafiltration membrane before initiating the Fenton reaction. The oxidation of TCP by Fenton reaction was performed at varying ratios of gluconic acid/Fe, and its effect on the decomposition of TCP and H2O2 was studied. TCP degradation was studied both in terms of parent compound degradation and free chloride generation.  相似文献   

14.
UV/TiO2/H2O2, UV/TiO2 and UV/H2O2 were compared as pre-treatment processes for the detoxification of mixtures of 4-chlorophenol (4CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP) and pentachlorophenol (PCP) prior to their biological treatment. When each chlorophenol was initially supplied at 50 mg l−1, UV/TiO2/H2O2 treatment supported the highest pollutant removal, COD removal, and dechlorination efficiencies followed by UV/TiO2 and UV/H2O2. The remaining toxicity to Lipedium sativum was similar after all pre-treatments. Chlorophenol photodegradation was always well described by a first order model kinetic (r2 > 0.94) and the shortest 4CP, DCP, TCP and PCP half-lives of 8.7, 7.1, 4.5 and 3.3 h, respectively, were achieved during UV/TiO2/H2O2 treatment. No pollutant removal was observed in the controls conducted with H2O2 or TiO2 only. Inoculation of all the photochemically pre-treated mixtures with activated sludge microflora was followed by complete removal of the remaining pollutants. Combined UV/TiO2/H2O2-biological supported the highest detoxification, dechlorination (99%) and COD removal (88%) efficiencies. Similar results were achieved when each chlorophenol was supplied at 100 mg l−1. COD and Cl mass balances indicated UV, UV/H2O2, and UV/TiO2 treatments lead to the formation of recalcitrant photoproducts, some of which were chlorinated.  相似文献   

15.
Optimizing electron spin resonance detection of hydroxyl radical in water   总被引:20,自引:0,他引:20  
Cheng SA  Fung WK  Chan KY  Shen PK 《Chemosphere》2003,52(10):1797-1805
The parameters affecting the electron spin resonance (ESR) detection of hydroxyl free radical in water are studied and optimized. The hydroxyl radical is generated by the Fenton reaction with iron (II) ammonium sulfate and hydrogen peroxide reacting in a phosphate buffer using N-tert-butyl-alpha-phenylnitron as the spin trap. The concentrations of Fe2+, H2O2, and phosphate buffer are the parameters studied. The Taguchi method and the orthogonal experiment design were used to evaluate the effects of these parameters on the ESR signal intensity. By the analysis of the signal-to-noise ratio and the analysis of variance, the order of importance of the various parameters on the hydroxyl radical formation is determined for optimal ESR detection of hydroxyl radical. The results will help the development of water purification technologies using hydroxyl free radical as a green oxidant.  相似文献   

16.
In this study, the rates of degradation of organic compounds by several AOPs (H2O2/UV, Fe(III)/UV, Fe(III)/H2O2/UV, Fe(II)/H2O2 and Fe(III)/H2O2) have been compared. Experiments were carried out at pH ≈ 3 (perchloric acid / sodium perchlorate solutions) and with UV reactors equipped with a low-pressure mercury vapour lamp (emission at 253.7 run). The data obtained with atrazine ([Atrazine]o = 100 μg/L) showed that the rate of degradation of atrazine in very dilute aqueous solution is much more rapid with Fe(III)/UV than with H2O2/UV. Photo-Fenton process (Fe(III)/H2O2/UV) was found to be more efficient than H2O2/UV and Fe(II)/H2O2 for the mineralization of acetone ([Acetone]o = 1 mM).  相似文献   

17.
Torrades F  Pérez M  Mansilla HD  Peral J 《Chemosphere》2003,53(10):1211-1220
Multivariate experimental design was applied to the treatment of a cellulose conventional bleaching effluent in order to evaluate the use of the Fenton reagent under solar light irradiation. The effluent was characterised by the general parameters total organic carbon (TOC), chemical oxygen demand and color, and it was analysed for chlorinated low molecular weight compounds using GC–MS. The main parameters that govern the complex reactive system: Fe(II) and H2O2 initial concentration, and temperature were simultaneously studied. Factorial experimental design allowed to assign the weight of each variable in the TOC removal after 15 min of reaction. Temperature had an important effect in the organic matter degradation, especially when the ratio of Fenton reagents was not properly chosen. Fenton reagent under solar irradiation proved to be highly effective for these types of wastewaters. A 90% TOC reduction was achieved in only 15 min of treatment. In addition, the GC–MS analysis showed the elimination of the chlorinated organic compounds initially detected in the studied bleaching effluents.  相似文献   

18.
Bae E  Lee JW  Hwang BH  Yeo J  Yoon J  Cha HJ  Choi W 《Chemosphere》2008,72(2):174-181
The photocatalytic inactivation (PCI) of Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive) was performed using polyoxometalate (POM) as a homogeneous photocatalyst and compared with that of heterogeneous TiO2 photocatalyst. Aqueous suspensions of the microorganisms (107–108 cfu ml−1) and POM (or TiO2) were irradiated with black light lamps. The POM-PCI was faster than (or comparable to) TiO2-PCI under the experimental conditions employed in this study. The relative efficiency of POM-PCI was species-dependent. Among three POMs (H3PW12O40, H3PMo12O40, and H4SiW12O40) tested in this study, the inactivation of E. coli was fastest with H4SiW12O40 while that of B. subtilis was the most efficient with H3PW12O40. Although the biocidal action of TiO2 photocatalyst has been commonly ascribed to the role of photogenerated reactive oxygen species such as hydroxyl radicals and superoxides, the cell death mechanism with POM seems to be different from TiO2-PCI. While TiO2 caused the cell membrane disruption, POM did not induce the cell lysis. When methanol was added to the POM solution, not only the PCI of E. coli was enhanced (contrary to the case of TiO2-PCI) but also the dark inactivation was observed. This was ascribed to the in situ production of formaldehyde from the oxidation of methanol. The interesting biocidal property of POM photocatalyst might be utilized as a potential disinfectant technology.  相似文献   

19.
Xu Y 《Chemosphere》2001,43(8):1103-1107
The degradation of a common textile dye, Reactive-brilliant red X-3B, by several advanced oxidation technologies was studied in an air-saturated aqueous solution. The dye was resistant to the UV illumination (wavelength λ  320 nm), but was decolorized when one of Fe3+, H2O2 and TiO2 components was present. The decolorization rate was observed to be quite different for each system, and the relative order evaluated under comparable conditions followed the order of Fe2+–H2O2–UV  Fe2+–H2O2 > Fe3+–H2O2–UV > Fe3+–H2O2 > Fe3+–TiO2–UV > TiO2–UV > Fe3+–UV > TiO2–visible light (λ  450 nm) > H2O2–UV > Fe2+–UV. The mechanism for each process is discussed, and linked together for understanding the observed differences in reactivity.  相似文献   

20.
An experiment was carried out to decompose chlorinated dioxins (PCDDs, PCDFs) Chlorobenzenes, NOx and odourous compounds (H2S, CH4S, C2H6S2, C8H8, C2H6S, C2H4O, NH3) simultaneously using a catalyst in the MSW incineration plant. The experiments were conducted at temperatures from 200°C to 400°C and from 3000h−1 to 6000h−1 at space velocity. A catalyst containing V2O5 and WO3 on the basis of TiO2 is used, an oxidizing catalyst of the honeycomb type. The average decomposition efficiencis were 95%, 98%, 92% for PCDDs(48CDDs), PCDFs(48CDFs) and Chlorobenzenes(36CLBs) at a reaction temperature of 350°C and a space velocity of 3000h−1, more than 90% for NOx at a reactiont temperature of 300°C and more than 80% for odourous compounds at the reaction temperature of 300°C and a space velocity of 6000h−1. All those compounds were decomposed successfully with increasing contact time and surface. The rate-determing step was the chemical reaction of catalyst surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号