首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 173 毫秒
1.
为强化CMICAO(多点交替进水阶式A2/O)工艺的脱氮除磷性能,通过调整进水C/N〔ρ(CODCr)/ρ(TN)〕、进水端厌氧池和缺氧池的进水流量比对CMICAO工艺参数进行优化,考察其对氮、磷去除的影响. 结果表明:试验条件下,C/N的提高可增强SND(同步硝化反硝化)作用,氮的去除效果也随之提高,C/N≥7时,前好氧池同步硝化反硝化率达到61%,出水ρ(TN)≤9.0 mg/L;在相同工况下,较低的C/N下反硝化除磷现象更明显. 综合考虑,C/N在5~7范围内,可取得较好的整体脱氮除磷效果. 优化工艺进水碳源分配可提高碳源利用效率,氮、磷的去除效果受进水流量比的影响较大,当厌氧池和缺氧池进水流量比为2.0时,可强化缺氧池的反硝化除磷作用,TN和TP去除率分别为75%和92%,出水ρ(CODCr)、ρ(NH+4-N)、ρ(TN)和ρ(TP)分别为28.7、1.9、9.2和0.27 mg/L,通过优化实现了CMICAO工艺对氮、磷去除的强化.   相似文献   

2.
对比考察了不同曝气强度下序批式活性污泥反应器(SBR)和序批式移动床生物膜反应器(SBMBBR)的脱氮除磷效果,并分析了反应器单个周期内有机物、氮和磷的转化过程.实验结果表明,SBMBBR和SBR脱氮主要是基于好氧段发生的同步硝化反硝化(SND)及进水、搅拌阶段发生的缺氧反硝化途径实现的,而除磷是基于常规生物除磷和反硝化除磷过程而完成.曝气强度会影响SBR和SBMBBR好氧阶段SND发生的程度,最佳曝气强度下两者通过SND作用去除的TN量分别达到去除总量的47.7%和79.0%.在采用先行厌氧的运行方式,保持系统内高浓度微生物,使反应器在进水C/N比只有2.2~3.5的条件下均取得了良好的脱氮除磷效果.两者相比,SBMBBR和SBR在COD和NH4-N去+除方面没有差异,而SBMBBR的反硝化、除磷效果更优,TN、TP去除率分别达到95.4%和93.5%,较SBR分别高出10.9%和4.1%.  相似文献   

3.
在4个序批式反应器(SBR)R1、R2、R3和R4中,以静置段代替传统厌氧段,采用后置缺氧,考察进水氨氮浓度分别为20,30,40,50mg/L对静置/好氧/缺氧SBR脱氮除磷性能的影响.结果表明,R1、R2、R3和R4长期运行中磷去除率分别为82.3%、92.8%、92.6%和89.1%,总氮(TN)去除率分别为97.2%、88.6%、84.5%和72.6%.静置段省却搅拌,但仍起厌氧段作用,仍可实现生物强化除磷.4个反应器好氧段均发生同步硝化-反硝化(SND),分别贡献14.7%、16.6%、17.8%和14.8%的进水后TN量,且后置缺氧段利用糖原驱动反硝化,脱氮效果较好,出水TN分别为0.57,4.43,6.61,13.70mg/L.研究表明,进水氨氮浓度可影响静置释磷、好氧摄磷、反硝化除磷.静置段代替厌氧段的后置缺氧工艺可取得较好脱氮除磷效果,且节约成本,简化工艺.  相似文献   

4.
进水C/N对富集聚磷菌的SNDPR系统脱氮除磷的影响   总被引:1,自引:0,他引:1  
为了解富集聚磷菌(PAOs)的同步硝化反硝化除磷(SNDPR)系统的脱氮除磷特性,采用延时厌氧(180min)/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以实际生活污水为处理对象, 通过投加固态乙酸钠调节进水C/N值(约为11,8,4,3),考察其对系统脱氮除磷特性及同步硝化反硝化(SND)脱氮率的影响.结果表明:C/N对系统的除磷性能没有影响,出水PO43--P浓度均稳定在0.3mg/L左右,这是由于系统内聚磷菌(PAOs)含量高,且在低氧段可同时发生好氧吸磷与反硝化吸磷.随着C/N的增大,出水NH4+-N浓度升高,C/N下降时,出水NO3--N浓度升高.此外,随着C/N的减小,厌氧段反硝化所消耗的COD占进水COD的比例增大,SND可利用的内碳源-PHAs储存量减少,但PHV的利用率增加;当C/N为4~8时,SND现象最明显,SND脱氮率达50.8%,而其它C/N条件下,SND脱氮率都有相应程度的减弱.C/N为8时,系统出水综合指标最好,TN去除率高达80.8%.  相似文献   

5.
静置/好氧/缺氧序批式反应器(SBR)脱氮除磷效果研究   总被引:5,自引:1,他引:4  
以静置段代替传统厌氧段,采用后置缺氧方式,考察了静置/好氧/缺氧序批式反应器(SBR)(R1)的生物脱氮除磷(BNR)性能,并与传统厌氧/好氧/缺氧序批式反应器(SBR)(R2)进行对比.两反应器进水乙酸钠、氨氮(NH+4-N)及磷酸盐(PO3-4-P)浓度均分别为350 mg·L-1(以COD计)、40 mg·L-1及12 mg·L-1,水力停留时间(HRT)为12 h.研究结果表明,R1长期运行中磷的去除率与R2相当,分别为92.4%和92.1%,而总氮(TN)去除率则较R2高,分别为83.5%和77.0%.R1静置段省去搅拌但仍能起到厌氧段的作用,为好氧快速摄磷奠定了基础,同时R1缺氧段发生反硝化摄磷,使出水磷降至0.91 mg·L-1.好氧段内R1发生了同步硝化-反硝化(SND),贡献了18.0%的TN去除量,R2也存在SND,但脱氮贡献率较少,仅为9.8%.R1和R2后置缺氧反硝化均以糖原驱动,反硝化速率分别为0.98、0.84 mg·g-1·h-1(以每g VSS产生的N(mg)计),出水TN分别为6.62、9.21 mg·L-1.研究表明,静置段代替传统厌氧段后,可获得更好的脱氮效果,且工艺更为简化.  相似文献   

6.
为了探明反硝化脱氮除磷工艺的碳源利用特性,通过SBR工艺对反硝化聚磷菌进行驯化在不同碳源浓度下,研究了反硝化脱氮除磷过程中的碳源利用特性。结果表明,反硝化脱氮除磷系统在厌氧段碳源转化过程中有一个饱和碳源,该研究中系统MLSS为3 000 mg/L时厌氧阶段饱和碳源浓度为250 mg/L COD。厌氧段进水碳源浓度低于该系统饱和碳源时,缺氧段总氮、磷去除随着厌氧段进水碳源浓度提高而增加,当进水碳源浓度超过饱和碳源时,总氮去除随着碳源浓度提高而进一步提高,但总磷去除率下降。说明缺氧段胞外碳源对系统脱氮有促进作用,但对除磷有抑制作用。厌氧进水碳源浓度达到饱和碳源时系统除磷效果最好,且脱氮所需的碳源利用效率最高此时系统COD(m)/NO_3~-N(m)值为3.3左右。  相似文献   

7.
亚硝酸盐为电子受体反硝化除磷工艺的可行性   总被引:26,自引:0,他引:26       下载免费PDF全文
采用序批式反应器(SBR),以亚硝酸盐为电子受体,探讨了厌氧/缺氧条件下反硝化除磷工艺的可行性,并通过间歇实验考察了亚硝酸盐浓度、进水COD浓度和进水pH值对反硝化除磷工艺的影响.结果表明,亚硝酸盐作为电子受体的同步脱氮除磷过程是完全可以实现的,控制NO2--N浓度为35±5mg/L、厌氧段进水pH值为8.0±0.1,缺氧段进水pH值为7.2±0.1、COD浓度为400mg/L时,反硝化除磷效果最佳.  相似文献   

8.
以生活污水作为处理对象,研究了双污泥短程硝化-反硝化除磷工艺A2/N-SBR长期反硝化除磷脱氮的性能,考察了典型周期系统运行效果,并探讨短程反硝化聚磷菌代谢机制。结果表明:A2/N-SBR工艺长期稳定运行有机物去除及脱氮除磷性能良好;典型周期内NO-2-N和TP出水浓度分别为0.53 mg/L和1.14 mg/L,TP去除率达88.8%;厌氧释磷阶段COD和胞内糖原浓度分别减少107.21 mg/L和76.81 mg/L,内碳源PHB含量增加150.88 mg/L,厌氧末期TP浓度是初始TP浓度的2.6倍,缺氧吸磷阶段TP和NO-2-N去除率分别为94%和96%。A2/N-SBR工艺脱氮除磷效果显著且稳定性强,短程反硝化聚磷菌吸磷反应的电子供体PHB的合成来自外碳源和糖原。  相似文献   

9.
选用4组同规格SBR反应器,在A/O/A模式下以水解酸化液为进水,调整厌/缺氧时间分别为50min/170min、90min/130min、130min/90min、180min/40min,探讨颗粒污泥在不同厌/缺氧时间下脱氮除磷特性.结果表明,厌氧时间从50min延长至90min时,污泥内碳源储存量和释磷量增加,同步硝化反硝化(SND)效率提高至62.65%,TN、TP去除率分别从81.1%、 82.2%上升92.9%、98.5%.当厌氧时间从90min升至180min时,释磷量反而下降,厌氧内源性条件刺激胞外聚合物(EPS)增加造成聚羟基烷酸(PHA)合成下降,TP去除率降至88.1%;同时缺氧时间从130min降至40min,系统残留的NOX-较多,造成TN去除率降低至84%.机理分析表明系统中TN在好氧段由反硝化聚磷菌(DPAOs)和反硝化聚糖菌(DGAOs)利用PHA以SND方式消耗,并在缺氧段由DGAOs内源反硝化进一步去除,TP由PAOs和DPAOs去除,由批次实验估算得DPAOs占比在R2中最高,达41%,4组反应器运行期间颗粒均未发生解体,以水解酸化液为基质培养的颗粒结构完整、稳定性强.结果表明,厌/缺氧时间的适当延长有利于加强内碳源的贮存与转化,强化厌氧释磷、SND和后置内源反硝化效果,实现同步硝化内源反硝化和除磷高效稳定运行.  相似文献   

10.
温度对生物强化除磷工艺反硝化除磷效果的影响   总被引:8,自引:1,他引:7  
以处理城市污水的中试规模生物强化除磷A2/O活性污泥工艺系统为研究对象,考察了温度对系统COD去除和脱氮除磷效果的影响,特别是温度对活性污泥反硝化除磷性能的影响.结果表明,当温度从(30.9±0.8)℃降低到(9.1±0.6)℃时,A2/O系统的脱氮除磷效果显著下降,系统对TN和TP的污泥去除负荷明显下降.通过污泥反硝化除磷活性实验发现,随着温度的降低,系统中活性污泥的最大厌氧释磷速率、最大好氧吸磷速率和最大缺氧吸磷速率都降低.活性污泥中反硝化除磷菌(DPB)占聚磷菌(PAOs)总量的比例随温度降低稍有下降,但平均值仍维持在47.5%左右.用阿伦尼乌斯公式对实验结果进行拟合,得到系统中活性污泥聚磷菌厌氧释磷反应活化能Ea1为148.0 kJ· mol-1,聚磷菌好氧吸磷反应活化能Ea2为228.8 kJ·mol-1,发生在缺氧条件下反硝化除磷菌的吸磷反应活化能Ea3为315.8 kJ·mol-1.对不同温度下污泥絮体粒径分析结果表明,随温度降低,粒径分布更加集中,系统中活性污泥絮体颗粒平均粒径减小,不利于污泥絮体内部反硝化除磷缺氧微环境的形成.  相似文献   

11.
A bench-scale anaerobic/anoxic/aerobic process-biological aerated filter (A^2/O-BAF) combined system was carded out to treat wastewater with lower C/N and C/P ratios. The A^2/O process was operated in a short aerobic sludge retention time (SRT) for organic pollutants and phosphorus removal, and denitrification. The subsequent BAF process was mainly used for nitrification. The BAF effluent was partially returned to anoxic zone of the A^2/O process to provide electron acceptors for denitrification and anoxic P uptake. This unique system formed an environment for reproducing the denitdfying phosphate-accumulating organisms (DPAOs). The ratio of DPAOs to phosphorus accumulating organisms (PAOs) could be maintained at 28% by optimizing the organic loads in the anaerobic zone and the nitrate loads into the anoxic zone in the A^2/O process. The aerobic phosphorus over-uptake and discharge of excess activated sludge was the main mechanism of phosphorus removal in the combined system. The aerobic SRT of the A^2/O process should meet the demands for the development of aerobic PAOs and the restraint on the nitrifiers growth, and the contact time in the aerobic zone of the A^2/O process should be longer than 30 min, which ensured efficient phosphorus removal in the combined system. The adequate BAF effluent return rates should be controlled with 1--4 mg/L nitrate nitrogen in the anoxic zone effluent of A^2/O process to achieve the optimal nitrogen and phosphorus removal efficiencies.  相似文献   

12.
A laboratory-scale anaerobic-anoxic-aerobic process (A2O) with a small aerobic zone and a bigger anoxic zone and biologic aerated filter (A2O-BAF) system was operated to treat low carbon-to-nitrogen ratio domestic wastewater. The A2O process was employed mainly for organic matter and phosphorus removal, and for denitrification. The BAF was only used for nitrification which coupled with a settling tank Compared with a conventional A2O process, the suspended activated sludge in this A2O-BAF process contained small quantities of nitrifier, but nitrification overwhelmingly conducted in BAF. So the system successfully avoided the contradiction in sludge retention time (SRT) between nitrifying bacteria and phosphorus accumulating organisms (PAOs). Denitrifying phosphorus accumulating organisms (DPAOs) played an important role in removing up to 91% of phosphorus along with nitrogen, which indicated that the suspended activated sludge process presented a good denitrifying phosphorus removal performance. The average removal efficiency of chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and NH4+-N were 85.56%, 92.07%, 81.24% and 98.7% respectively. The effluent quality consistently satisfied the national first level A effluent discharge standard of China. The average sludge volume index (SVI) was 85.4 mL·g−1 additionally, the volume ratio of anaerobic, anoxic and aerobic zone in A2O process was also investigated, and the results demonstrated that the optimum value was 1:6:2.  相似文献   

13.
为了解同步短程硝化内源反硝化除磷(SPNDPR)系统的脱氮除磷特性,以低C/N城市污水为处理对象,采用延时厌氧(180 min)/好氧运行的SBR反应器,通过联合调控曝气量和好氧时间,考察了该系统启动与优化运行特性.结果表明,当系统好氧段曝气量为0. 8 L·min~(-1),好氧时间为150 min时,出水PO_4~(3-)-P浓度约为1. 5 mg·L~(-1)左右,出水NH_4~+-N和NO_3~--N浓度由10. 28 mg·L~(-1)和8. 14 mg·L~(-1)逐渐降低至0 mg·L~(-1)和2. 27 mg·L~(-1),出水NO_2~--N浓度逐渐升高至1. 81 mg·L~(-1);当曝气量提高至1. 0 L·min~(-1)且好氧时间缩短至120min后,系统除磷、短程硝化性能逐渐增强,但总氮(TN)去除性能先降低后逐渐升高,最终出水PO_4~(3-)-P、NH_4~+-N分别稳定低于0. 5 mg·L~(-1)和1. 0 mg·L~(-1),好氧段亚硝积累率和SND率分别达98. 65%和44. 20%,TN去除率达79. 78%. SPNDPR系统内好氧段好氧吸磷、反硝化除磷、短程硝化、内源反硝化同时进行保证了低C/N污水的同步脱氮除磷.  相似文献   

14.
氧化沟不同A/O分区对脱氮效果影响的模拟实验研究   总被引:1,自引:0,他引:1  
采用3种不同曝气模式的模拟氧化沟分别形成2、4、7个缺氧-好氧(A/O)分区,研究了3种工况下氧化沟的脱氮方式和脱氮效果.结果表明,在好氧缺氧区体积比例相同的条件下,A/O分区越多,则好氧区平均DO浓度越小,硝化菌活性越低,在2、7个4、A/O分区的3种工况下的硝化菌活性分别为4.80、和3.73mg·g·h4.65-1-1;A/O分区少,则每一分区的缺氧段和好氧段长,进水后反硝化菌利用的有机物就多,在好氧区中的有机物就少,用于硝化的DO量多,从而硝化和脱氮效果好.试验中3种工况的总氮平均去除率分别为60.14%、47.93%、57%,出水总氮平均浓度分别为17.01、22.17和27.92mg·L-1.在氧化沟工艺中,氮的去除途径主要是缺氧反硝化及同步硝化反硝化(SND).分区多,则主要通过同步硝化反硝化脱氮;分区少,则以缺氧反硝化脱氮为主,这是由于碳源限制致使同步硝化反硝化的脱氮效率比缺氧反硝化低.  相似文献   

15.
为了解厌氧/好氧/缺氧(A/O/A)运行的序批式反应器(SBR)中,强化生物除磷(EBPR)与同步短程硝化反硝化(SPND)耦合,并后置短程反硝化的脱氮除磷特性,以低C/N(≤4)城市污水为处理对象,通过优化曝气量和缺氧时间,实现了低C/N城市污水的深度脱氮除磷.结果表明,当好氧段曝气量由1.0 L·min-1降至0.6 L·min-1,缺氧时间为180 min时,出水PO3-4-P浓度由0.06 mg·L~(-1)降至0,出水NH+4-N、NO-2-N和NO-3-N浓度分别由0.18、18.79和0.08 mg·L~(-1)逐渐降低至0、16.46和0.05 mg·L~(-1),TN去除率由72.69%提高至77.97%;随着曝气量的降低,SPND现象愈加明显,SND率由19.18%提高至31.20%;此后,当缺氧段时间由180 min逐渐延长至420 min,出水PO3-4-P、NH+4-N和NO-3-N浓度分别维持在0、0和0.03 mg·L~(-1)左右,出水NO-2-N低至3.06 mg·L~(-1),SND率达32.21%,TN去除性能逐渐提高,TN去除率高达99.42%,实现了系统的深度脱氮除磷.  相似文献   

16.
为实现低C/N城市污水与含硝酸盐废水的同步处理,采用SBR接种活性污泥,通过合理控制厌氧/缺氧/低氧时间和溶解氧(DO)浓度,实现了反硝化除磷耦合同步硝化内源反硝化(DPR-SNED)系统的启动,并对启动过程中系统的脱氮除磷特性进行了研究.结果表明采用厌氧/低氧的运行方式,控制厌氧时间为3 h,好氧段DO浓度为0. 5~1. 0 mg·L-1,60 d可实现同步硝化内源反硝化除磷(SNEDPR)系统的启动,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统氮磷去除率维持在90%以上,COD的去除率维持在80%以上,系统SNED率和CODins率分别维持在70%和95%左右;随后改变运行方式,采用厌氧/缺氧/低氧的方式运行,缺氧段前进含硝酸盐废水,45 d可实现DPR-SNED系统的启动,缺氧末PO_4~(3-)-P浓度1. 1 mg·L-1,出水PO_4~(3-)-P浓度0. 5 mg·L-1,系统磷、COD去除率均维持在90%以上,氮去除率维持在88%以上,系统SNED率和CODins率分别维持在62%和90%左右. DPR-SNED系统的成功启动后,厌氧段聚糖菌和聚磷菌对城市污水有限碳源的充分利用和强化储存,可为后续缺氧段及好氧段的脱氮除磷提供充足的内碳源.此外,DPR-SNED系统缺氧段内源短程反硝化的进行保障了系统在低C/N(4)条件下的高效脱氮.  相似文献   

17.
庄桂嘉  刘立凡  黄潇  高静思  朱佳 《环境工程》2022,40(12):128-133
为提高电镀废水的污染物去除效率,探讨厌氧-缺氧-好氧(AAO)-生物膜耦合工艺的有机物去除和脱氮除磷效能。结果表明:AAO-生物膜工艺处理电镀难降解有机废水运行效果良好,COD去除率稳定在89%左右;脱氮主要途径是好氧硝化,缺氧反硝化,60 d运行中系统脱氮率达到70%~80%;难降解有机物影响NH4+-N和COD的去除效率,且存在时间差距,在其影响下,NH4+-N的变化稍滞后于COD。AAO-生物膜工艺的除磷效果经50 d运行后趋于稳定,出水TP浓度低于1 mg/L,去除率>65%,除磷主要依靠厌氧释磷和好氧吸磷过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号