首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为分析煤矿井下高压喷雾雾化特性,采用自行设计的喷雾降尘实验系统,对雾滴粒径的空间分布以及雾化参数的影响因素进行了全面的研究。结果表明,沿喷嘴轴线方向,随着距喷嘴距离的增加,雾滴粒径不断增大;在离喷嘴一定距离的纵断面上,雾滴粒径由内向外不断增大,但增幅较小。随着喷雾压力的增加,喷嘴流量和雾流射程不断增大,而雾化锥角和雾滴粒径不断减小。在相同的喷雾压力下,随着喷嘴直径的增加,喷嘴流量和雾化锥角不断增大,而雾流射程基本保持不变;随着喷嘴直径的增加,喷雾形成的雾滴粒径也逐渐增加,且增幅越来越大。在相同耗水量下,随着喷嘴直径的增加,喷雾压力和雾流射程不断减小,而雾化锥角和雾滴粒径不断增大。  相似文献   

2.
对于发尘强度大的尘源,需要布置多个喷嘴进行联合抑制,多个喷嘴联合布置会伴有干涉现象。干涉区域雾滴之间的相互碰撞和再次破碎在微雾除尘过程中起着重要作用。同时,喷嘴数量和位置也显著影响整体雾化效果。为了进一步了解雾滴在运动过程中发生的一系列动力学事件,基于碰撞模型、破碎模型以及蒸发模型,采用UDF方法对雾化场进行了数值模拟,模拟结果表明,增加喷嘴数目可以适当提高雾滴粒径分布的均匀性,进而提高除尘效率;随着雾化压力提高,雾滴初始动能增加,对小于5μm的呼吸性粉尘有很好的除尘效果。  相似文献   

3.
运用计算流体力学(CFD)的方法,对大型脉冲袋式除尘器清灰时喷吹管内压缩气流喷吹的均匀性进行了数值模拟研究。在对传统等直径喷嘴的喷吹管出口的平均质量流量、流量偏差和喷嘴内气流的速度场进行分析的基础上发现,通过改变喷嘴直径和形状可以提高喷吹管系统的清灰均匀性。其中,采用锥形变径喷嘴时,喷吹管喷出的压缩气流的流量偏差降到2%以内,喷嘴内气流合速度方向与径向夹角几乎为零,到达滤袋的速度明显增大,极大改善了喷吹管喷吹气流的均匀性,有效提高滤袋的清灰强度,为袋式除尘器清灰系统的优化设计提供了依据。  相似文献   

4.
针对工业粉尘控制问题,在稳态喷雾实验台上对多孔空气雾化喷嘴和扇形空气雾化喷嘴的雾化性能进行实验研究。结果发现,在喷嘴入口水压和空气压力一定的实验条件下,扇形喷嘴具有更大的喷雾锥角,但多孔喷嘴的液滴索特平均直径SMD明显低于扇形喷嘴;多孔喷嘴的雾化锥角和SMD随水流量变化基本保持稳定,液体质量在抑尘平面位置分布均匀,而扇形喷嘴的雾化锥角和SMD随水流量增加而明显增大,在抑尘位置液滴质量分布差异显著。综合来看,多孔空气雾化喷嘴的雾化效果优于扇形空气雾化喷嘴。  相似文献   

5.
对自行设计的 Y 型内混双级雾化喷嘴进行了实验研究,分析了不同喷嘴尺寸对喷嘴流量特性的影响.对比了压缩空气与过热蒸气做雾化介质的不同.通过测量喷嘴内混室压力,拟合出了供气压力-内混室压力曲线,并通过实验测量和校核,得到工质流景系数的表达式,对喷嘴设计有指导作用.  相似文献   

6.
为提高烟尘净化用喷嘴的雾化性能,提出一种气液两相旋流喷嘴,用CFX软件对该喷嘴内部流场模拟的结果表明,强烈的气旋作用使液流呈环状,使气液混合流在达到喷嘴末端时易于破碎成雾。在实验室条件下,利用Winner313型喷雾激光粒度分析仪对喷嘴进行了雾化粒度测定,分析发现雾滴中位径与气液比的关系呈幂函数衰减,这一规律将有助于在工程应用时确定喷嘴工况。  相似文献   

7.
为探究2 000 mm长滤筒滤筒在脉冲清灰时,不同喷吹条件(喷吹孔径、喷吹距离)对滤筒清灰性能的影响及沿长滤筒长度方向上侧壁压力峰值分布规律,设计脉冲喷吹实验,测定ф147 mm×2 000 mm(覆PTFE膜)长滤筒在不同喷吹条件下的侧壁压力峰值。实验结果表明,2 000 mm长滤筒的最佳喷吹孔径为15 mm,最佳喷吹距离为240 mm,在0.5MPa条件下,沿滤筒长度方向上各测点的侧壁压力峰值分别为P0 1 084、P1 1 898、P2 1 276、P3 1 556、P4 1 302和P5 3 258。并得出最佳喷吹距离随着喷吹孔径的减小而逐渐增大,以及沿长滤筒长度方向上侧壁压力峰值分布呈现先增加再减小再增加的分布规律。研究成果旨在为长滤筒过滤系统优化设计及滤筒除尘器代替滤袋除尘器的应用上提供指导。  相似文献   

8.
射流曝气在活性污泥处理方法中起着重要的作用.采用数值模拟的方法研究自吸式单级单喷射流器中的气液两相流动状况,通过对不同长径比和喷嘴面积比的射流曝气器模型的气液两相流的计算,定量分析长径比和喷嘴面积比对射流曝气器流场和空气与工作介质流量比的影响,为进一步设计开发新型高效的射流曝气器提供参考.  相似文献   

9.
金属纤维滤袋可直接过滤高温烟气粉尘,解决高温烟气粉尘导致的环境、安全问题,对高温烟气的余热能源回收利用有非常重要的意义。目前,金属滤袋除尘器脉冲喷吹参数是依照传统纤维滤袋器设计的,存在着脉冲瞬时气流导致喷吹清灰失效问题。针对此问题,在脉冲喷吹实验平台上,通过改变喷吹压力、喷吹距离以及喷吹孔径,针对?130 mm×2 000 mm的金属滤袋,利用压力数据采集系统测试喷吹压力0.2~0.6 MPa、喷吹孔径6~14 mm、喷吹距离50~250 mm时,金属滤袋距顶部80、200、600、1 000、1 400和1 800 mm 6个部位的侧壁压力峰值,以探求针对金属滤袋的脉冲喷吹的合理参数。结果表明:2 m金属滤袋的最佳脉冲喷吹孔径为8 mm,最佳喷吹距离为200 mm,最佳喷吹压力为0.5 MPa;此条件下的P1(80 mm)、P2(200 mm)、P3(600 mm)、P4(1 000 mm)、P5(1 400 mm)、P6(1 800 mm)的侧壁压力峰值分别为1 000、1 686、839、746、749和2 005 Pa。金属滤袋的侧壁压力峰值大小排列呈下上中的规律。随着喷吹孔径的增大,最优喷吹距离有逐渐减小的趋势。金属滤袋的中、下部(距滤袋口600~1 400 mm)清灰将是未来金属滤袋清灰的重点关注部位。上述研究结果可为金属滤袋的推广发展提供参考。  相似文献   

10.
射流曝气的气液两相流的数值模拟   总被引:7,自引:0,他引:7  
射流曝气在活性污泥处理方法中起着重要的作用。采用数值模拟的方法研究自吸式单级单喷射流器中的气液两相流动状况,通过对不同长径比和喷嘴面积比的射流曝气器模型的气液两相流的计算,定量分析长径比和喷嘴面积比对射流曝气器流场和空气与工作介质流量比的影响,为进一步设计开发新型高效的射流曝气器提供参考。  相似文献   

11.
A laboratory size spray dry scrubbing unit consisting of a spray dryer and a pulse Jet baghouse was used to study the effect of grinding recycle waste on SO2 removal across the spray dryer and on sorbent utilization. The equipment treats simulated flue gas with a dry flow rate of 1.5 m3 h?1 (stp) and utilizes an ultrasonic nozzle for atomization. The apparatus was initially tested over a broad range of operating conditions; a close agreement in SO2 removal was found with data from much larger units. The effect of grinding the FGD recycle material on the SO2 removal across the spray dryer was found to be great. Grinding the recycle material can enhance the SO2 removal efficiency to a level comparable to operation with a large excess of fresh lime.  相似文献   

12.
To reveal the formation mechanism of a pulse-jet airflow’s cleaning effect in a filter bag, a theoretical model is built by using the theory of the gas jet and unitary adiabatic flow according to given specifications and dimensions of the bags and resistance characteristics of the cloth and dust layer. It is about the relationship between cleaning system structure and operating parameters. The model follows the principle that the flow and kinetic energy of jet flow injected into a filter bag should be consistent with the flow of cleaning airflow in the bag and the pressure drop flowing through the filter cloth and dust layer. The purpose of the model is to achieve the peak pressure of cleaning airflow, which dominates the effect of the pulse-jet cleaning process. The cleaning system structure includes air pressure in the nozzle, structure and size of nozzle, exit velocity of nozzle, jet distance, and diameter of jet cross section. Based on the condition of the cleaning system structure and operating parameters established by using the theoretical model, Fluent software is applied to carry out a numerical simulation of the jet airflow field at the nozzle’s outlet, jet airflow field between nozzle and bag top, and cleaning airflow field in the filter bag. Experimental results are used to verify the reliability of the theoretical model. They are obtained in a pilot-scale test filter with a single bag, with length 2 m and in general full-scale dimensions of the cleaning system. The results show that when any rectification measure is not installed at the bag opening, the cross-sectional area covered by the jet gas is hardly sufficient to cover the entire area of the bag opening. A large portion of the gases injected into the filter bag will overflow reversely upward from the edge due to pressure differences between the upper area and lower area inside the bag opening. This led to a serious shortage of the cleaning airflow and ar limited increase in static pressure. When a venturi-type rectifier tube is installed at the bag opening, the jet flow is converted to funnel flow for which the cross-section velocity distribution is more uniform at the throat of the rectifier tube due to the guided effects of the upper tapered pipe. Then it is transited to stressful flow below the bag opening via rectified effects of the lower dilated pipe. The results show that the gap between the static pressure of gas in the bag and the expected value is significantly reduced. The theoretical value of the nozzle diameter is enlarged to compensate for two aspects of adverse effects of cleaning airflow and energy. This is because the flow is not a purely free-form jet from the nozzle to the entrance of the rectifier tube and because the gas suffers from local resistance while flowing through the rectifier tube. The numerical simulation and experiment show that the peak pressure of cleaning airflow in the filter bag is able to reach the expected value. The results confirm that the mechanism of the pulse-jet cleaning airflow and the calculation method of the pulse-jet cleaning system structure and operating parameters offered in this study are correct. The study results provide a scientific basis for designing the system of pulse-jet fabric filters.

Implications: Pulse-jet cleaned fabric filters are commonly used for air pollution control in many industries. Pulse-jet cleaning is widely used for this purpose as it enables frequent cleaning while the filter is operating. However, the theoretical system of the forming mechanism of the pulse-jet cleaning has not formed so far. This indicates the theoretical model plays an important role in designing effective pulse-jet cleaned fabric filters.  相似文献   


13.
The objective of this study was to evaluate the effects of nozzle types and 2,4-D formulations on spray deposition on different targets. Two field experiments were carried out in a completely randomized design, and treatments were arranged in a factorial scheme. Species in experiment 1 were Sumatran fleabane (Conyza sumatrensis) and Brazil pusley (Richardia brasiliensis) and in experiment 2 were soybeans (Glycine max) and Benghal dayflower (Commelina benghalensis). For both experiments, the first factor corresponded to spray nozzles with different settings (AD 110.015 – 61 and 105 L ha?1; AD 015-D – 75 and 146 L ha?1; XR 110.0202 – 200 L ha?1; and ADIA-D 110.02 – 208 L ha?1) and the second factor consisted of two formulations of 2,4-D (amine and choline). The formulation of 2,4-D choline has contained Colex-D? Technology. Similar or higher spray deposition was observed on the leaves and artificial targets when using 2,4-D choline as compared to the 2,4-D amine formulation, and these differences in deposition were more evident for nozzles applying lower spray volumes. Deposition was more affected by nozzle type when amine formulation was used, compared to choline formulation.  相似文献   

14.
Abstract

A series of wind tunnel atomization studies were carried out to investigate the effects of polymer and invert suspension oil “drift control adjuvants” upon the droplet size distribution spectra produced by nozzles typically used in aerial and ground based spraying of pesticides. A D8–46 disc and core was used as a typical aerial application nozzle, and an 8003 fan nozzle was used for the ground based sprayers simulation. The droplet size spectra were evaluated in a wind tunnel using a Malvern 2600 laser particle size analyzer immediately upon mixing and at 15 minutes after re‐circulation through a pumping system. The addition of the polymer‐based adjuvants significantly increased the droplet size spectra parameters of the spray cloud, but all the polymer products showed signs of breakdown of their molecular arrangements in the liquid medium, as a result of agitation. The invert suspension oil adjuvant did not change the droplet size spectra markedly, nor did it show signs of breakdown of the internal liquid structure after re‐circulation.  相似文献   

15.
Abstract

The application of agrichemicals is a highly inefficient process and one of the main causes of the environmental and health risks currently associated with pesticide usage. Efforts to mitigate this inefficiency have largely been unsuccessful, due principally to the poor understanding of the processes involved in the spray application of pesticides, from atomization to biological effect. A generalized model of the application system for pesticides from atomization to biological result is described in this overview. The model allows the investigation of the biological consequences of altering the application parameters for the bacterial insecticide Bacillus thuringiensis when used against the diamondback moth (Plutella xylostella L.) with cabbage as the substrate. Parameters input into the model include the in‐flight droplet size frequency distribution of the spray cloud, spatial distribution of the deposit, spread and subsequent environmental degradation of the deposit, and behavioral and toxicological effects.

It is hoped that such a modelling approach can afford insights into the application process, and, through a better understanding of the inefficient but still highly effective hydraulic application systems used worldwide, reduce that inefficiency to tolerable levels.  相似文献   

16.
The removal of SO2 with atomization of a slaked lime slurry and supplemental injection of gaseous NH3 were tested in a conventional spray dryer/baghouse system for SO2 concentrations of 2000 ppm and 3000 ppm and a 30° F approach to saturation. Results at 3000 ppm of SO2 showed an average SO2 removal efficiency of 90.3 percent at a combined stoichiometric ratio of 0.95-1.10 and an average overall sorbent utilization of 91.6 percent. The overall molal ratio of NH3/SO2 reaction was found to be 2:1 under the test conditions Particle size analyses, and EP toxicity tests were conducted on the products of the reactions.  相似文献   

17.
Abstract

Spray atomization and deposition patterns of three formulations were investigated in five aerial spray trials in Newfoundland, to understand the inter‐relationships between physical properties, drop size spectra and recovery of the spray volume at ground level. Diflubenzuron (DFB) was sprayed at 30 g active ingredient in 2.0 L/ha. Futura XLV (Fu‐XLV) and Thuricide® 48LV (Thu‐48LV), spray formulations of Bacillus thuringiensis (B.t.), were both applied undiluted at 30 BIU/ha, but in volume rates of 2.1 L/ha and 2.36 L/ha respectively. Each of the three formulations was applied over a 15 ha plot using a Piper Pawnee aircraft fitted with six Micronair® AU5000 atomizers. Spray drops were sampled with Kromekote® cards and deposits were collected on glass plates. Physical properties measured were: viscosity at variable shear rates, volatility and surface tension. The viscosities increased progressively from low (for DFB), moderate (for Thu‐48LV) to high (for Fu‐XLV) values, showing a gradual increase in pseudoplastic behaviour of the three formulations. The volatility data indicated an inverse relationship to the viscosities, but the surface tensions were similar for all the formulations.

The highly pseudoplastic Fu‐XLV atomized into the least wide drop size spectrum. The Newtonian formulation of DFB, on the other hand, atomized into the widest drop spectrum; and the moderately pseudoplastic Thu‐48LV, into an intermediate drop spectrum. Thus viscosity and volatility were more important factors in liquid atomization and drop deposition, than surface tension. Among the three meteorological factors measured, relative humidity appeared more important in drop deposition than did wind speed and temperature, within the range measured.  相似文献   

18.
Abstract

Field experiments were conducted in corn plots during 1988 that were artificially Infested with stalkborers, Papianema nebris (Guenee'). Two atomizers, a flatfan and a flood nozzle chosen for different droplet size distributions were used to apply two insecticides, chlorpyrifos and cyfluthrin at two application rates. Nozzles, insecticides, rates, and associated interactions were evaluated for control of stalkborer in the field. Laboratory studies involved application of insecticides to soil and glass via a spray track for bioassay at field application rates. Image analysis of percent area travelled on water sensitive paper by stalkborers was compared to droplet percent area covered to obtain percent area contacted per insect. Droplet size distributions for each nozzle were obtained using an Aerometrics particle sizing instrument. Significant differences in stalkborer control were attributed to percent area covered by smaller droplets measured by image analysis.  相似文献   

19.
The main objective of this study is to apply neutral electrolyzed water (NEW) spraying to inactivate bioaerosols. We evaluated the inactivation efficiency of NEW applied to inactivate two airborne bacterial Escherichia coli and Bacillus subtilis aerosols inside an environmental-controlled chamber in the study. Generated with electrolyzing 6.15 M sodium chloride brine, the NEW with free available chlorine (FAC) concentration 50, 100, and 200 ppm was pumped with an air pressure of 70 kg/cm2 through nozzle into the chamber to inactive E. coli and B. subtilis aerosols precontaminated air (initial counts of 3?×?104 colony-forming units [CFU]/m3). Bacterial aerosols were collected and cultured from chamber before and after NEW spray. The air exchange rate (ACH, hr?1) of the chamber was set to simulate fresh air ventilating dilution of indoor environment. First-order concentration decaying coefficients (Ka, min?1) of both bacterial aerosols were measured as an index of NEW inactivation efficiency. The result shows that higher FAC concentration of NEW spray caused better inactivation efficiency. The Ka values under ACH 1.0 hr?1 were 0.537 and 0.598 for E. coli of FAC 50 and 100 ppm spraying, respectively. The Ka values of FAC 100 ppm and 200 ppm spraying for B. subtilis were 0.063 and 0.085 under ACH 1.0 hr?1, respectively. The results indicated that NEW spray is likely to be effective in inactivation of bacterial airborne contamination. Moreover, it is observed in the study that the increase of ventilation rate and the use of a larger orifice-size nozzle may facilitate the inactivation efficiency.

Implications: Bacterial aerosols have been implicated in deterioration of air quality and occupational health. Effective, safe, and economic control technology is highly demanded, especially for agricultural and food industries. In the study, NEW mist spraying performed effectively in controlling E. coli and B. subtilis modeling bioaerosols contamination. The NEW revealed its potential as an alternative airborne disinfectant worth being discovered for improving the environmental quality in the future.  相似文献   

20.
Abstract

A wind tunnel was used to characterize the droplet size spectra of liquid sprays from several different atomizers and nozzles used under simulated aerial application conditions. The atomizers included a D8–46 nozzle, a Through Valve Boom (TVB) nozzle, and rotary cage and drum atomizers.

The D8–46 hydraulic nozzle was evaluated, using water, at orientations of 0, 10, 20, 30, 40, 50, 60, 70, 80 and 90° relative to 145 and 180 km/h airstreams. The TVB nozzle was evaluated using water, water with isopropyl alcohol, and water with a non‐ionic surfactant at airstream velocities between 130 and 180 km/h. The rotary atomizers were evaluated at different rotation rates, flow rates of water and an insecticide, in 130 and 180 km/h airstreams.

The volumetric droplet size spectra parameters (Dvo.x) decreased as the angle of the D8–46 nozzle and the airstream velocity increased. Empirical models were developed to predict these values for different windspeed and nozzle angle conditions. The TVB nozzle produced larger droplets than the other atomizers under similar conditions, with a decrease in the Dvo.x parameter values as the airstream velocity increased.

The Dvo.x parameter values produced by the rotary atomizers increased as the liquid flow rate increased, and as the rotation rate and airstream velocity decreased, and were lower for the insecticide than for water. The slotted rotary drum atomizer gave the best control over droplet size, generally producing mono‐modal droplet size spectra where the other atomizers often produced bi‐ and multimodal spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号