首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We undertook a quantitative estimation of health risks to residents living in the Slovak Republic and exposed to contaminated groundwater (ingestion by adult population) and/or soils (ingestion by adult and child population). Potential risk areas were mapped to give a visual presentation at basic administrative units of the country (municipalities, districts, regions) for easy discussion with policy and decision-makers. The health risk estimates were calculated by US EPA methods, applying threshold values for chronic risk and non-threshold values for cancer risk. The potential health risk was evaluated for As, Ba, Cd, Cu, F, Hg, Mn, NO3 ?, Pb, Sb, Se and Zn for groundwater and As, B, Ba, Be, Cd, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn for soils. An increased health risk was identified mainly in historical mining areas highly contaminated by geogenic–anthropogenic sources (ore deposit occurrence, mining, metallurgy). Arsenic and antimony were the most significant elements in relation to health risks from groundwater and soil contamination in the Slovak Republic contributing a significant part of total chronic risk levels. Health risk estimation for soil contamination has highlighted the significance of exposure through soil ingestion in children. Increased cancer risks from groundwater and soil contamination by arsenic were noted in several municipalities and districts throughout the country in areas with significantly high arsenic levels in the environment. This approach to health risk estimations and visualization represents a fast, clear and convenient tool for delineation of risk areas at national and local levels.  相似文献   

2.
Fernando de Noronha is a small volcanic archipelago in the Southern Atlantic, some 350 km NE of the city of Natal in NE Brazil. These remote volcanic islands represent a largely pristine environment, distant from sources of anthropogenic contamination. This study was carried out to determine the natural concentrations of Ag, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V and Zn in the A and B horizons of soils of Fernando de Noronha. The aims of the study were twofold: determine whether there is a relationship between the bedrock geology and soils and to establish quality reference values for soils from Fernando de Noronha. Soil samples were subjected to acid digestion by the USEPA method 3051A, and metals were determined by inductively coupled plasma emission spectrophotometry. The results showed that the trace element distribution largely reflects the geochemistry of the underlying volcanic rocks of the Remedios and Quixaba Formations. The results demonstrate that the concentrations of Ba, Cr, Zn, Ni and Cu from the soils of the volcanic Fernando de Noronha archipelago are higher than those found in soils from continental Brazil. However, concentrations of Ni, Cu and Co are lower in soils of the archipelago as compared to other volcanic islands throughout the world. The elevated trace element concentrations of the volcanic parent material of Fernando de Noronha soils seem to be the main factor governing the relatively high natural concentrations of trace elements.  相似文献   

3.
First results are presented from the Urban geochemistry of Tallinn, a project supported by the Scientific and Environmental Affairs Division of NATO. The distribution of chemical elements in 532 samples of the topsoils from the territory of the biggest industrial centre of Estonia (pop. 500,000) is interpreted. Statistical analysis and mapping of major and trace elements at the territory of the Tallinn region and of the city were performed and background values and local anomalies of chemical elements on the territory were determined. The investigation focussed on the determination of zones with anomalously high concentrations of elements and the relationships of soil contamination with different pollution sources. The increase of the element concentrations has natural as well as anthropogenic origins. A detailed comparative analysis of the element distributions and the results of a factor analysis showed that the distribution of the major chemical elements depended mainly on the composition of the underlying sedimentary rocks.The territory of Tallinn is characterised by relatively high and widespread concentrations of Ba, Cr, Ga, Ni, Ti and Zn. Especially intensive local concentrations were determined for As, Cr, Mn, Ni, Pb, S, V and Zn, which are typical for the local pollution of the soils by industrial sources. The levels of As, Cr, Mn and V are more than three times. Pb and Zn are more than five times higher in the geochemical anomalies than for background levels. For the Tallinn region two major associations of elements connected with industrial pollutions of the soil are typical: the first association includes Ba, Cr, Mn, Ni and partly Fe and the second one includes As, Pb and Zn. For the city of Tallinn an increase of Ag, Ba, Be, La, Pb, Sn and Zn concentration in the soil was detected. Ba, Cr, Mn and Ni occur in high concentrations in the soils around Maardu. Different types of contamination sources can be identified in Tallinn and its suburbs.  相似文献   

4.
Field and laboratory-column studies were undertaken in order to investigate soil contamination derived from past mining activity in the Sierra Almagrera (SA) district in southeast Spain. The tailings, soil and sediment samples that were collected showed high concentrations of Ag, As, Ba, Cu, Pb, Sb and Zn when analyzed. The mean concentrations of these elements in the tailings were 29.8, 285.4, 54000, 57.7, 2687.5, 179.0 and 2269.0 ppm, respectively. In the soil samples these decreased to 14.3, 96.9, 24700, 37.5, 1859.1, 168.5 and 815.7 ppm, respectively. Geochemical analyses demonstrated high levels of As, Pb and Zn which were above the intervention values set forth in the Andalusian Regulations for Contaminated Soils for As (>50 ppm), Pb (>500 ppm) and Zn (>2000 ppm). Column experiments and mineralogical studies suggest that the dissolution of sulfates and other secondary phases, accumulated in soils and waste-sites during the dry season, acts to control the mobility of metals. The elution curves obtained from column experiments showed a mobilization of Ba, Cu, Pb and Zn, while a low mobility was seen for Ag, As and Sb.  相似文献   

5.
Field and laboratory-column studies were undertaken in order to investigate soil contamination derived from past mining activity in the Sierra Almagrera (SA) district in southeast Spain. The tailings, soil and sediment samples that were collected showed high concentrations of Ag, As, Ba, Cu, Pb, Sb and Zn when analyzed. The mean concentrations of these elements in the tailings were 29.8, 285.4, 54000, 57.7, 2687.5, 179.0 and 2269.0 ppm, respectively. In the soil samples these decreased to 14.3, 96.9, 24700, 37.5, 1859.1, 168.5 and 815.7 ppm, respectively. Geochemical analyses demonstrated high levels of As, Pb and Zn which were above the intervention values set forth in the Andalusian Regulations for Contaminated Soils for As (>50 ppm), Pb (>500 ppm) and Zn (>2000 ppm). Column experiments and mineralogical studies suggest that the dissolution of sulfates and other secondary phases, accumulated in soils and waste-sites during the dry season, acts to control the mobility of metals. The elution curves obtained from column experiments showed a mobilization of Ba, Cu, Pb and Zn, while a low mobility was seen for Ag, As and Sb.  相似文献   

6.
European floodplain soils are frequently contaminated with potentially toxic inorganic substances. We used a multi-surface model to estimate the aqueous concentrations of Cd, Cu, Ni, Pb and Zn in three Mollic Fluvisols from the Central Elbe River (Germany). The model considered complexation in solution and interactions with soil organic matter (SOM), a clay mineral and hydrous Al, Fe and Mn oxides. The amounts of reactive metals were derived from extraction with 0.43 M HNO3. Modelling was carried out as a function of pH (soil pH ± 1.4) because it varies in floodplain soils owing to redox processes that consume or release protons. The fraction of reactive metals, which were dissolved according to the modelling, was predominantly <1%. Depending on soil properties, especially pH and contents of SOM and minerals of the clay fraction, the modelled concentrations partially exceeded the trigger values for the soil–groundwater pathway of the German soil legislation. This differentiation by soil properties was given for Ni, Pb and Zn. On the other hand, Cd was more mobile, i.e., the trigger values were mostly exceeded. Copper represented the opposite, as the modelling did not predict exceeding the trigger values in any horizon. Except for Pb and partially Zn (where oxides were more important), SOM was the most important adsorbent for metals. However, given the special composition and dynamics of SOM in mollic horizons, we suggest further quantitative and qualitative investigations on SOM and on its interaction with metals to improve the prediction of contaminant dynamics.  相似文献   

7.

Paddy soil contamination is directly linked to human dietary exposure to toxic chemicals via crop consumption. In Korea, rice paddy fields are often located around industrial complexes, a major anthropogenic source of metals. In this study, rice paddy soils were collected from 50 sites in three industrial cities to investigate the contamination characteristics and ecological risk of metals in the soils. The cities studied and their major industries are as follows: Ulsan (petrochemical, nonferrous, automobile, and shipbuilding), Pohang (iron and steel), and Gwangyang (iron and steel, nonmetallic, and petrochemical). Thirteen metals (Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn) were analyzed using inductively coupled plasma–optical emission spectrometry (ICP–OES). The mean concentration of Cd (1.98 mg/kg) exceeded the soil quality guideline of Canada (1.4 mg/kg), whereas concentrations of other metals were under the standards of both Korea and Canada. Generally, levels of metal concentrations decreased with increasing distance from industrial complexes. Among the three cities, Pohang showed high concentrations of Zn (142.2 mg/kg), and Ulsan and Gwangyang showed high concentrations of Cr (33.9 mg/kg) and Ba (126.4 mg/kg), respectively. These contamination patterns were influenced by the different major industries of each city, which was clearly demonstrated by the principal component analysis results. Pollution indices suggested that As, Cd, Pb, and Zn were enriched in the paddy soils via anthropogenic activities. Comprehensive potential ecological risk indices were at considerable levels for most sites, especially because of major contributions from As and Cd, which can pose potential ecological threats.

  相似文献   

8.
Regional geochemical data of heavy metals are commonly used for environmental risk assessment and management. Often these data are based on so-called total concentrations, whereas the exposure to the mobile or reactive fraction of these elements finally determines whether the exposed ecosystem is at risk and to which extent. The objective of our research was to develop a wider applicable method for quantitative hazard assessment of soil metal contamination attributable to the activity of man, based on and illustrated with data from the Netherlands. Since chemical availability (0.43 M HNO3 extractable concentrations) of Cd, Cu, Pb and Zn appeared strongly related to the estimated anthropogenic enrichment, we used these concentrations to assess the hazard of human-induced enrichment of these metals. We expressed the enrichment hazard using the toxic pressure concept, which estimates the fraction of biological species (varying between 0 and 1) potentially affected due to the level of exposure to single metals or their local mixtures. This is done using logistic (enrichment) concentration/response models parameterized with ecotoxicological effect data from toxicity tests and mixture models. Hazards varied from very low toxic pressures (lower than 0.01) to (most often) toxic pressure less than 0.05, whereby the latter relates to the so-called 95%-protection criterion used in some soil protection legislations. In rare cases, the toxic pressure exceeded the value of 0.05, to an upper limit of 0.054 for Cd. The rank order of metal enrichment hazards suggests that Cd enrichment induces the largest hazard increase. There are limited (rank order) differences in enrichment hazards between soil types. Comparing the judgement of soils based on soil screening levels and based on toxic pressure of anthropogenic Cd, Cu, Pb and Zn enrichments, the soil screening values appear to more conservative. This exemplifies the use of soil screening values as a method to note regulatory concern, but not always indicating an actual hazard or risk. When screening values are exceeded, refined hazard insights can be obtained, as illustrated in this paper. This provides a more refined insight in the ecotoxic implications of human-induced metal enrichments in soils, as refined basis for risk management decisions.  相似文献   

9.
In this study, we analysed pellets from long-eared owls (Asio otus) collected from four localities in Belgrade (Serbia). The pellets contained the remains of prey, namely voles (Arvicola terrestris) and field mice (Apodemus agrarius). The concentrations of 14 elements (Ca, P, Mg, Na, K, Fe, Zn, Sr, Ba, Mn, Ti, Cu, Si, B) were evaluated in whole pellets and in samples containing only bone tissue, which were dissected from the whole pellet. The increased levels of certain elements, including Mn, Zn, Ba, Cu and radioactive 40K, indicate contamination of the soil by various sources, such as industrial plants and agricultural practices. From the results presented in this article, we suggest that the analysis of owl pellets may indicate the quality of the local environment.  相似文献   

10.
This paper examines the geochemical features of 8 soil profiles developed on metalliferous black shales distributed in the central parts of the South China black shale horizon. The concentrations of 21 trace elements and 8 major elements were determined using ICP-MS and XRF, respectively, and weathering intensity (W) was calculated according to a new technique recently proposed in the literature. The data showed that the black shale soils inherited a heterogeneous geochemical character from their parent materials. A partial least square regression model and EFbedrock (enrichment factor normalized to underlying bedrock) indicated that W was not a major control in the redistribution of trace metals. Barium, Sn, Cu, V, and U tended to be leached in the upper soil horizons and trapped by Al and Fe oxides, whereas Sb, Cd, and Mo with negative EF values across the whole profiles may have been leached out during the first stage of pedogenesis (mainly weathering of black shale). Compared with the Chinese average soils, the soils were strongly enriched in the potentially toxic metals Mo, Cd, Sb, Sn, U, V, Cu, and Ba, among which the 5 first listed were enriched to the highest degrees. Elevated concentrations of these toxic metals can have a long-term negative effect on human health, in particular, the soils in mining areas dominated by strongly acidic conditions. As a whole, the black shale soils have much in common with acid sulfate soils. Therefore, black shale soils together with acid sulfate soils deserve more attention in the context of metal exposure and human health.  相似文献   

11.
The potential environmental risk posed by metals in forest soils is typically evaluated by modeling metal mobility using soil-solution partitioning coefficients (K(d)), although such information is generally restricted to a few well-studied metals. Soil-solution partitioning coefficients were determined for 17 mineral elements (Al, As, Be, Ba, Ca, Cr, Cu, Fe, Ga, K, Li, Mg, Rb, Sr, Tl, U and V) in A-horizon (0-5 cm) soil at 46 forested sites that border the Precambrian Shield in central Ontario, where soil pH(aq) varied from 3.9 to 8.1. Sites were dominated by mature sugar maple (Acer saccharum Marsh.), white birch (Betula papyrifera Marsh.), balsam fir (Abies balsamea (L.) Mill.) or white pine (Pinus strobus L.). Log K(d) values for all elements could be predicted by empirical linear regression with soil pH (r (2) = 0.17-0.77) independent of forest type, although this relationship was greatly affected by positive relationships between acid-extractable metal concentration and pH(aq) for 13 of the 17 elements. Elements that exhibited strong or moderate (r (2)> 0.29; p < 0.001) relationships with soil pH(aq) in soil water extracts include Al, Ba, Fe, Ga, K, Li, Rb, Tl, V (negative) and Ca (positive). Elemental partitioning in mineral soil was independent of forest type; tree species differed in their response to chemical differences in mineral soil. For example, Rb, Ba, and Sr concentrations in foliage of sugar maple and white birch significantly increased with increasing soil acidity, whereas Rb, Ba, and Sr concentrations in balsam fir and white pine foliage exhibited no response to soil pH(aq). While K(d) values can provide useful information on the potential mobility and bioavailability of mineral elements in forest soils, care must be used when interpreting the relative contribution of solid and aqueous phases to this relationship and the differing responses of vegetation in elemental cycling in forests must also be considered.  相似文献   

12.
Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).  相似文献   

13.
为进一步探明酸沉降对森林红壤及生态环境的影响,模拟长沙地区降水酸度及离子组成,采用浸泡试验对两种森林红壤活性铝的释出及土壤理化性质的变化进行了研究。结果表明,模拟酸雨浸泡初期,土壤活性铝的释出量随浸泡次数的增加而增加,原始土壤pH值愈低,活性铝释出愈多;强酸度、高离子浓度(AR4)模拟酸雨对土壤中活性铝的溶出量远大于基础酸雨(AR3)及弱酸、低离子浓度酸雨(AR2)和对照酸雨(AR1)。模拟酸雨酸度愈大,对土壤pH值的影响愈明显,不同土层间,以A层土壤pH值下降最明显,B、C层土壤则下降较小。模拟酸雨模拟浸泡土壤25年后,土壤阳离子交换量均有不同程度下降,有机质含量高,原土壤阳离子交换量大的土壤下降幅度也大。  相似文献   

14.
The environmental impacts of Boroo gold mine project in Mongolia was evaluated by chemical characterization of trace element concentrations in water, soils and tailing dam sediment samples. The results showed that concentrations of B, Cd, Ni and Se in the water samples were within the accepted levels of the Mongolia water quality standard (MNS4586: 1998). However, the concentrations of Al, As, Cu, Mn, Fe, Pb, U and Zn were higher than the maximum allowable concentration especially in the monitoring and heap leach wells. The average concentrations of As, Cd, Cu, Ni, Pb and Zn in the tailing dam sediment were 4419, 58.5, 56.0, 4.8, 20.6 and 25.7 mg/kg, respectively. Generally, arsenic and heavy metals in the soil samples were within the acceptable concentrations of the soil standard of Mongolia (MNS 5850: 2008). The chemical characterization of As solid phase in tailing dam sediment showed that the majority of As were found in the residual fraction comprising about 74% of total As. Assessing the potential risk to humans, simple bioavailability extraction test was used to estimate bioavailability of arsenic and heavy metals, and the concentrations extracted from tailing dam sediment were; 288.2 mg/kg As, 7.2 mg/kg Cd, 41.1 mg/kg Cu, 13.5 mg/kg Pb, 4.7 mg/kg Ni and 23.5 mg/kg Zn, respectively. From these results, the Boroo gold mine project has presently not significantly impacted the environment, but there is a high probability that it may act as a source of future contamination.  相似文献   

15.
In the developing world, vegetables are commonly grown in suburban areas irrigated with untreated wastewater containing potentially harmful elements (PHEs). In Pakistan, there is no published work on the bioaccessibility aspect of PHEs and dietary minerals (DMs) in sewage-irrigated soil or the vegetables grown on such soils in Pakistan. Several industrial districts of Pakistan were selected for assessment of the risk associated with the ingestion of vegetables grown over sewage-irrigated soils. Both the total and bioaccessible fraction of PHEs (Cd, Co, Cr, Ni, and Pb) and DMs (Fe, Cu, Mn, Zn, Ca, Mg, and I) in soils and vegetable samples were measured. The concentrations of these PHEs and DMs in sewage-irrigated and control soils were below published upper threshold limits. However, compared to control soils, sewage irrigation over the years decreased soil pH (7.7 vs 8.1) and enhanced dissolved organic carbon (1.8 vs 0.8 %), which could enhance the phyto-availability of PHEs and DMs to crops. Of the PHEs and DMs, the highest transfer factor (soil to plant) was noted for Cd and Ca, respectively. Concentrations of PHEs in most of the sewage-irrigated vegetables were below the published upper threshold limits, except for Cd in the fruiting portion of eggplant and bell pepper (0.06–0.08 mg/kg Cd, dry weight) at three locations in Gujarat and Kasur districts. The bioaccessible fraction of PHEs can reduce the context of dietary intake measurements compared to total concentrations, but differences between both measurements were not significant for Cd. Since the soils of the sampled districts are not overly contaminated compared to control sites, vegetables grown over sewage-irrigated soils would provide an opportunity to harvest mineral-rich vegetables potentially providing consumers 62, 60, 12, 104, and 63 % higher dietary intake of Cu, Mn, Zn, Ca, and Mg, respectively. Based on Fe and vanadium correlations in vegetables, it is inferred that a significant proportion of total dietary Fe intake could be contributed by soil particles adhered to the consumable portion of vegetables. Faecal sterol ratios were used to identify and distinguish the source of faecal contamination in soils from Gujranwala, Gujarat, and Lahore districts, confirming the presence of human-derived sewage biomarkers at different stages of environmental alteration. A strong correlation of some metals with soil organic matter concentration was observed, but none with sewage biomarkers.  相似文献   

16.
Thirty-two brownfield sites from the city of Wolverhampton were selected from those with a former industrial use, wasteland or areas adjacent to industrial processes. Samples (<2 mm powdered soil fraction) were analysed, using inductively coupled plasma–atomic emission spectrometry (ICP–AES) for 20 elements. Loss on ignition and pH were also determined. A five-step chemical sequential extraction technique was carried out. Single leach extraction with 0.12 M hydrochloric acid of Pb, Cu and Zn in soil was determined as a first approximation of the bioavailability in the human stomach. Some of the sites were found to have high concentrations of the potentially toxic elements Pb, Zn, Cu and Ni. The partitioning of metals showed a high variability, however a number of trends were determined. The majority of Zn was partitioned into the least chemically stable phases (steps 1, 2 and 3). The majority of Cu was associated with the organic phase (step 4) and the majority of Ni was fractionated into the residue phase (step 5). The majority of Pb was associated with the residue fraction (step 5) followed by Fe–Mn oxide fraction (step 3). The variability reflects the heterogeneous and complex nature of metal speciation in urban soils with varied historic histories. There was a strong inverse linear relationship between the metals Ni, Zn and Pb in the readily exchangeable phase (step 1) and soil pH, significant at P < 0.01 level. There was a significant increase (P < 0.05) in the partitioning of Cu, Ni and Zn into step 4 (the organic phase) in soils with a higher organic carbon content (estimated by loss on ignition). Copper was highly partitioned into step 4 as it has a strong association with organics in soil but this phase was not important for the partitioning of Ni or Zn. The fractionation of Ni, Cu and Zn increased significantly in step 3 when the total metal concentration increases (P < 0.01). The Fe–Mn oxide fraction becomes more important in soils elevated in these metals, possibly due to the scavenging of metals by oxides. Cu and Pb extracted by HCl was statistically similar to the sum of the metals in steps 1 to 4 (P < 0.01) and HCl available Zn was statistically similar to the sum of Zn in steps 1 to 3 (P < 0.01). Step 4 (the organic phase) was not an important phase for Zn, so it was concluded that any Cu, Zn and Pb present in soil in a nonresidue phase would be potentially available for uptake into the human system once soil has been ingested.  相似文献   

17.
The total annual production of coal combustion by-products in the USA is expected to exceed 150 million Mg by the year 2000. Agricultural utilisation may offer a partial solution to disposal problems, but the benefits and risks associated with using these materials must be assessed. Four coal combustion by-products, bed ash (BA) and fly ash (FA) from a fluidised-bed combustion furnace and stabilised scrubber sludge (SS) and a high gypsum content by-product (G) from flue gas desulphurisation processes were added to two soils at rates of 0, 20, 40 and 80 g kg-1. The growth and elemental composition of Gulf annual ryegrass (Lolium multiflorum L.) were evaluated in the treated soils. Adding FA, SS and G to both soils at application rates of up to 80 g kg-1 was not detrimental to the growth of ryegrass and resulted in higher yields than controls in some instances. Adding BA created a high alkalinity, high soluble-salt environment that initially inhibited seedling germination and significantly reduced (p<0.05) yields of dry matter, so it will probably need to be restricted to rates of lime requirement. Ryegrass concentrations of Cu, Zn, Ni, Pb, Cd and Cr were similar in control and treated soils, but levels of B, Se, As and Mo were raised in treatments. Based on low trace-element concentrations in ryegrass shoots and in soil solution, Se from FA application may be the only potential food-chain risk associated with application of the four coal combustion by-products used in this investigation.  相似文献   

18.
Reconnaissance soil geochemical survey of Gibraltar   总被引:2,自引:0,他引:2  
The extreme density of population of Gibraltar, situated at the southern tip of Spain, exerts considerable pressure on land use and thus future planning is of utmost importance. An initial reconnaissance soil geochemical survey of Gibraltar was based on 120 surface samples (0–15 cm) taken from a wide range of exposed, either bare soil or vegetated sites, to provide the optimum geographical distribution. The total elemental concentrations of 26 elements (Li, Na, K, Be, Mg, Ca, Sr, Ba, Al, La, Ti, V, Cr, Mo, Mn, Fe, Co, Ni, Cu, Ag, Zn, Cd, Pb, P, S, As) were determined by nitric/percholric acid digestion followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) analysis. The reconnaissance data shows that the spatial distribution of various elements depended on previous and present land use. Most elements (Ca, Cr, Mg and Mn excluded) exhibited relatively high concentrations in civilian and natural soils. Trends have been established for many elements, and concentrations exceeding guideline values have been found in certain areas of Gibraltar. This reconnaissance of Gibraltar is at present being followed by a more detailed baseline geochemical survey, which will establish the extent and magnitude of the variations in major and trace elements in soils and dusts, assess the impact of industrial, commercial and urban development on the geochemical landscape and to make recommendations concerning sustainable development.  相似文献   

19.
The concentrations and distributions of chemical elements (Ag, Al, As, Au, Ba, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Se, Sr, Te, Th, Ti, Tl, U, V, W and Zn) were studied in till, humus and urban soil in Jakobstad, a small town (20,000 inhabitants) in W. Finland. The analyses were performed with ICP-MS after aqua regia leaching of till (n = 37), urban topsoil (n = 32) and subsoil (n = 32), and HNO3 leaching of humus (n = 37). The till and humus samples, collected at the same sites, were divided into urban and rural samples. The urban till was not significantly enriched in metals. In contrast, a majority of the elements occurred in higher concentrations in the urban than the rural humus samples. Statistical and spatial interpretations of the humus data revealed that traffic (Pb, V and Ni), metal industry (Pb, Zn, Bi, Sb and Cr), an abandoned shooting range (Pb and Sb) and other sources contribute to higher metal levels in the urban humus. The urban soil samples were collected at parks, yards, abandoned industrial sites, roadsides, etc. The topsoil samples were enriched in most elements, also by elements not enriched in the urban humus (e.g. Cd). At several sites, the concentrations far exceeded the limit concentrations for contaminated soils in Finland. A large variety of sources were identified or indicated.  相似文献   

20.
Li J  Richter DD  Mendoza A  Heine P 《Ecology》2008,89(10):2911-2923
In the ancient and acidic Ultisol soils of the Southern Piedmont, USA, we studied changes in trace element biogeochemistry over four decades, a period during which formerly cultivated cotton fields were planted with pine seedlings that grew into mature forest stands. In 16 permanent plots, we estimated 40-year accumulations of trace elements in forest biomass and O horizons (between 1957 and 1997), and changes in bioavailable soil fractions indexed by extractions of 0.05 mol/L HCl and 0.2 mol/L acid ammonium oxalate (AAO). Element accumulations in 40-year tree biomass plus O horizons totaled 0.9, 2.9, 4.8, 49.6, and 501.3 kg/ha for Cu, B, Zn, Mn, and Fe, respectively. In response to this forest development, samples of the upper 0.6-m of mineral soil archived in 1962 and 1997 followed one of three patterns. (1) Extractable B and Mn were significantly depleted, by -4.1 and -57.7 kg/ha with AAO, depletions comparable to accumulations in biomass plus O horizons, 2.9 and 49.6 kg/ha, respectively. Tree uptake of B and Mn from mineral soil greatly outpaced resupplies from atmospheric deposition, mineral weathering, and deep-root uptake. (2) Extractable Zn and Cu changed little during forest growth, indicating that nutrient resupplies kept pace with accumulations by the aggrading forest. (3) Oxalate-extractable Fe increased substantially during forest growth, by 275.8 kg/ha, about 10-fold more than accumulations in tree biomass (28.7 kg/ha). The large increases in AAO-extractable Fe in surficial 0.35-m mineral soils were accompanied by substantial accretions of Fe in the forest's O horizon, by 473 kg/ha, amounts that dwarfed inputs via litterfall and canopy throughfall, indicating that forest Fe cycling is qualitatively different from that of other macro- and micronutrients. Bioturbation of surficial forest soil layers cannot account for these fractions and transformations of Fe, and we hypothesize that the secondary forest's large inputs of organic additions over four decades has fundamentally altered soil Fe oxides, potentially altering the bioavailability and retention of macro- and micronutrients, contaminants, and organic matter itself. The wide range of responses among the ecosystem's trace elements illustrates the great dynamics of the soil system over time scales of decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号