首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Introduced Birds and the Fate of Hawaiian Rainforests   总被引:3,自引:0,他引:3  
Abstract:  The Hawaiian Islands have lost nearly all their native seed dispersers, but have gained many frugivorous birds and fleshy-fruited plants through introductions. Introduced birds may not only aid invasions of exotic plants but also may be the sole dispersers of native plants. We assessed seed dispersal at the ecotone between native- and exotic-dominated forests and quantified bird diets, seed rain from defecated seeds, and plant distributions. Introduced birds were the primary dispersers of native seeds into exotic-dominated forests, which may have enabled six native understory plant species to become reestablished. Some native plant species are now as common in exotic forest understory as they are in native forest. Introduced birds also dispersed seeds of two exotic plants into native forest, but dispersal was localized or establishment minimal. Seed rain of bird-dispersed seeds was extensive in both forests, totaling 724 seeds of 9 native species and 2 exotics with over 85% of the seeds coming from native plants. Without suitable native dispersers, most common understory plants in Hawaiian rainforests now depend on introduced birds for dispersal, and these introduced species may actually facilitate perpetuation, and perhaps in some cases restoration, of native forests. We emphasize, however, that restoration of native forests by seed dispersal from introduced birds, as seen in this study, depends on the existence of native forests to provide a source of seeds and protection from the effects of ungulates. Our results further suggest that aggressive control of patches of non-native plants within otherwise native-dominated forests may be an important and effective conservation strategy.  相似文献   

2.
McConkey KR  Drake DR 《Ecology》2006,87(2):271-276
Rare species play limited ecological roles, but particular behavioral traits may predispose species to become functionally extinct before becoming rare. Flying foxes (Pteropodid fruit bats) are important dispersers of large seeds, but their effectiveness is hypothesized to depend on high population density that induces aggressive interactions. In a Pacific archipelago, we quantified the proportion of seeds that flying foxes dispersed beyond the fruiting canopy, across a range of sites that differed in flying fox abundance. We found the relationship between ecological function (seed dispersal) and flying fox abundance was nonlinear and consistent with the hypothesis. For most trees in sites below a threshold abundance of flying foxes, flying foxes dispersed < 1% of the seeds they handled. Above the threshold, dispersal away from trees increased to 58% as animal abundance approximately doubled. Hence, flying foxes may cease to be effective seed dispersers long before becoming rare. As many species' populations decline worldwide, identifying those with threshold relationships is an important precursor to preservation of ecologically effective densities.  相似文献   

3.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

4.
5.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

6.
Digestive physiology and movement patterns of animal dispersers determine deposition patterns for endozoochorously dispersed seeds. We combined data from feeding trials, germination tests, and GPS telemetry of Asian elephants (Elephas maximus) to (1) describe the spatial scale at which Asian elephants disperse seeds; (2) assess whether seasonal differences in diet composition and ranging behavior translate into differences in seed shadows; and (3) evaluate whether scale and seasonal patterns vary between two ecologically distinct areas: Sri Lanka's dry monsoon forests and Myanmar's (Burma) mixed-deciduous forests. The combination of seed retention times (mean 39.5 h, maximum 114 h) and elephant displacement rates (average 1988 m in 116 hours) resulted in 50% of seeds dispersed over 1.2 km (mean 1222-2105 m, maximum 5772 m). Shifts in diet composition did not affect gut retention time and germination of ingested seeds. Elephant displacements were slightly longer, with stronger seasonal variation in Myanmar. As a consequence, seed dispersal curves varied seasonally with longer distances during the dry season in Myanmar but not in Sri Lanka. Seasonal and geographic variation in seed dispersal curves was the result of variation in elephant movement patterns, rather than the effect of diet changes on the fate of ingested seeds.  相似文献   

7.
Spatial model of annual weed seed dispersal, in this article, was theoretically derived. According to the requirements of building the spatial model, we designed and done an indoor experiment of weed seed dispersal by wind. In the experiment, the seeds of Bromus sterilis were released at 100 cm height under different wind velocity conditions. Based on the experimental data, the spatial models of seed dispersal of the weed species were built, which were divided into three types according to the coefficient β < 0, β = 0, β > 0. The results showed that dispersal of annual weed seed in any direction obeyed an approximate Gaussian distribution; under the experimental conditions, spatial distribution type of weed seed dispersal changed with variation of wind velocity. Well-known Howard et al.'s model (Howard et al., 1991) of Bromus sterilis seed dispersal is an especial example of the model built in this article. The result of model analysis indicated that the distribution type described by Howard's model was similar to that of seed dispersal of the weed species at the height of 100 cm under the condition of lower wind velocity (about 2.18 m/s). Using CA simulation analysis we found that mean control agent applying to a cell with weed should have a decrease with an increase of wind velocity to prevent weed with the initial configuration from spreading, which implicated less herbicide needs spraying in every cell with weed on average when wind velocity increases.  相似文献   

8.
Poulsen JR  Clark CJ  Bolker BM 《Ecology》2012,93(3):500-510
The loss of animals in tropical forests may alter seed dispersal patterns and reduce seedling recruitment of tree species, but direct experimental evidence is scarce. We manipulated dispersal patterns of Manilkara mabokeensis, a monkey-dispersed tree, to assess the extent to which spatial distributions of seeds drive seedling recruitment. Based on the natural seed shadow, we created seed distributions with seeds deposited under the canopy ("no dispersal"), with declining density from the tree ("natural dispersal"), and at uniform densities ("good dispersal"). These distributions mimicked dispersal patterns that could occur with the extirpation of monkeys, low levels of hunting, and high rates of seed dispersal. We monitored seedling emergence and survival for 18 months and recorded the number of leaves and damage to leaves. "Good dispersal" increased seedling survival by 26%, and "no dispersal" decreased survival by 78%, relative to "natural dispersal." Using a mixed-effects survival model, we decoupled the distance and density components of the seed shadow: seedling survival depended on the seed density, but not on the distance from the tree. Although community seedling diversity tended to decrease with longer dispersal distances, we found no conclusive evidence that patterns of seed dispersal influence the diversity of the seedling community. Local seed dispersal does affect seedling recruitment and survival, with better dispersal resulting in higher seedling recruitment; hence the loss of dispersal services that comes with the reduction or extirpation of seed dispersers will decrease regeneration of some tree species.  相似文献   

9.
McConkey KR  Brockelman WY 《Ecology》2011,92(7):1492-1502
Plant species with generalized dispersal mutualisms are considered to be robust to local frugivore extinctions because of redundancy between dispersal agents. However, real redundancy can only occur if frugivores have similar foraging and ranging patterns and if fruit is a limiting resource. We evaluated the quantitative and qualitative contributions of seed dispersers for an endochorus mast-fruiting species, Prunus javanica (Rosaceae) in Khao Yai National Park, Thailand, to evaluate the potential redundancy of dispersers. Data were collected from tree watches, seed/fruit traps, and seed transects under and away from fruiting trees, feeding and seed deposition by gibbons (Hylobates lar), and evaluations of seed and first-year seedling survival. We identified three clusters of dispersers within the network. Most (>80%) frugivore species observed were small birds and squirrels that were not functional dispersers, dropping most seeds under or very near the tree crown, where seedling survival was ultimately nil. Monkeys (Macaca leonina) were low-quality, short-range dispersers, but they dispersed large numbers of seeds and were responsible for 67% of surviving first-year seedlings. Gibbons and Oriental Pied Hornbills (Anthracoceros albirostris) handled few fruits, but they provided the highest quality service by carrying most seeds away from the canopy to medium and long distances, respectively. Although there was overlap in the deposition patterns of the functional dispersers, they displayed complementary, rather than redundant, roles in seed dispersal. Satiation of all functional dispersers further limited their capacity to "replace" one another. Redundancy must be evaluated at the community level because each type of disperser may shift to different species in the non-masting years of P. javanica. Our results underscore the need for research on broader spatial and temporal scales, which combines studies of dispersal and plant recruitment, to better understand mechanisms that maintain network stability.  相似文献   

10.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

11.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

12.
The endozoochorous dispersal of seeds by mammals and birds between distinct vegetation communities was assessed to determine the importance of these processes in coastal dune field management. Isolated pockets of thicket vegetation (bush-pockets) within a large coastal dune field provided the opportunity to study vertebrate seed dispersal and its contribution to their origin and maintenance. Mammalian and avian faeces were collected for the quantification of seeds dispersed via endozoochory. Birds and mammals showed considerable overlap, dispersing intact seeds of 17 and 29 plant species, respectively, but mammals dispersed a greater diversity and size range than birds. Extrapolation of mammalian faecal data indicates an annual input of 23 million intact seeds to the dune field. Significantly more seeds are deposited by mammals and birds in the bush-pockets than on open sand, and birds deposited greater numbers of seeds nearer the seed source. Zoochory appears to be critical for the maintenance of the bush-pocket habitats through the dispersal of climax woody plant species into the dune field. Directional dispersal by birds and mammals to the bush-pockets is considered to be responsible for the maintenance and possible origin of these bush-pockets. The high number of exotic plant propagules dispersed by both avian and mammalian zoochory highlights the importance of management of the Alexandria Coastal Dunefield (ACD) beyond the reserve boundaries. In a dynamic system such as the ACD which is within a declared nature reserve, the continued existence of the bush-pockets may depend on the maintenance, beyond the reserve boundaries, of a reservoir of not only plant material but vertebrate dispersers as well.  相似文献   

13.
Summary. Geographic variations in the correspondence between diaspore phenotypes and disperser behavior are thought to determine the evolution of plant-animal dispersal mutualisms. Helleborus foetidus is a widely distributed plant in Western Europe, which seeds bear a lipid rich elaiosome attracting ant dispersers. Laboratory cross-tests were conducted to check the correspondence between diaspore phenotypes and ant preference in two localities of the Iberian Peninsula, Caurel and Cazorla, separated by 750 km. Diaspores from Caurel were systematically preferred to those from Cazorla by Formica lugubris (the major disperser at Caurel), and Aphaenogatser iberica and Camponotus cruentatus (both major dispersers at Cazorla). Further bioassays conducted on A. iberica only showed that differences in elaiosome traits were sufficient to explain ant preference. Separation of the lipid fractions composing the elaiosome revealed that triglycerides, diglycerides and free fatty acids were all dominated by oleic acid. The elaiosomes from Caurel contained relatively more free oleic acid but were less concentrated in linoleyl-containing triglycerides, free palmitic acid and free linoleic acid than those from Cazorla. The three lipid fractions were attractive to ants but dummies soaked with the free fatty acids extracted from Caurel were preferred to those from Cazorla. Taken together, these results reinforce the idea that oleic acid is a major releaser of seed collection by ants and suggest that geographic variations in free fatty acid composition affect the probability of diaspore removal by ants which in turn potentially determine plant demography.  相似文献   

14.
Conservation efforts are often motivated by the threat of global extinction. Yet if conservationists had more information suggesting that extirpation of individual species could lead to undesirable ecological effects, they might more frequently attempt to protect or restore such species across their ranges even if they were not globally endangered. Scientists have seldom measured or quantitatively predicted the functional consequences of species loss, even for large, extinction‐prone species that theory suggests should be functionally unique. We measured the contribution of Asian elephants (Elephas maximus) to the dispersal of 3 large‐fruited species in a disturbed tropical moist forest and predicted the extent to which alternative dispersers could compensate for elephants in their absence. We created an empirical probability model with data on frugivory and seed dispersal from Buxa Tiger Reserve, India. These data were used to estimate the proportion of seeds consumed by elephants and other frugivores that survive handling and density‐dependent processes (Janzen‐Connell effects and conspecific intradung competition) and germinate. Without compensation, the number of seeds dispersed and surviving density‐dependent effects decreased 26% (Artocarpus chaplasha), 42% (Careya arborea), and 72% (Dillenia indica) when elephants were absent from the ecosystem. Compensatory fruit removal by other animals substantially ameliorated these losses. For instance, reductions in successful dispersal of D. indica were as low as 23% when gaur (Bos gaurus) persisted, but median dispersal distance still declined from 30% (C. arborea) to 90% (A. chaplasha) without elephants. Our results support the theory that the largest animal species in an ecosystem have nonredundant ecological functionality and that their extirpation is likely to lead to the deterioration of ecosystem processes such as seed dispersal. This effect is likely accentuated by the overall defaunation of many tropical systems.  相似文献   

15.
《Ecological modelling》2005,185(1):93-103
The effect of the seed abscission process on the dispersal distance of seeds has never been studied explicitly and is often ignored in studies that aim to estimate the seed shadows of species. To examine the importance of the abscission process for the seed shadow we used a seed trajectory model that keeps track of the release threshold dynamics of the individual seeds on mother plant. We defined the release threshold as the critical wind speed that induces a mechanical force that is just large enough to release a seed from its mother plant. The model used real wind speed sequences and seed appearance over time on the mother plant.Several calculations were performed to investigate the effect of release thresholds dynamics on seed shadow of two herbaceous species with contrasting terminal velocity values (Vt): Centaurea jacea (Vt = 4.1 m s−1) and Hypochaeris radicata (Vt = 0.49 m s−1).Release thresholds were responsible for a two-fold increase of median dispersal distances in both species. Tails of the seed shadows, the fraction of seeds that travel furthest, were even more sensitive and increased with a factor 4.5 for Centaurea and 7.0 for Hypochaeris. Our work indicates that the abscission process appears to be very important and suggests that dispersal distance of plants is currently severely underestimated, which, in turn, has major consequences for our current understanding of the distribution, metapopulation dynamics and survival of plant species.  相似文献   

16.
Russo SE  Portnoy S  Augspurger CK 《Ecology》2006,87(12):3160-3174
Seed dispersal fundamentally influences plant population and community dynamics but is difficult to quantify directly. Consequently, models are frequently used to describe the seed shadow (the seed deposition pattern of a plant population). For vertebrate-dispersed plants, animal behavior is known to influence seed shadows but is poorly integrated in seed dispersal models. Here, we illustrate a modeling approach that incorporates animal behavior and develop a stochastic, spatially explicit simulation model that predicts the seed shadow for a primate-dispersed tree species (Virola calophylla, Myristicaceae) at the forest stand scale. The model was parameterized from field-collected data on fruit production and seed dispersal, behaviors and movement patterns of the key disperser, the spider monkey (Ateles paniscus), densities of dispersed and non-dispersed seeds, and direct estimates of seed dispersal distances. Our model demonstrated that the spatial scale of dispersal for this V. calophylla population was large, as spider monkeys routinely dispersed seeds >100 m, a commonly used threshold for long-distance dispersal. The simulated seed shadow was heterogeneous, with high spatial variance in seed density resulting largely from behaviors and movement patterns of spider monkeys that aggregated seeds (dispersal at their sleeping sites) and that scattered seeds (dispersal during diurnal foraging and resting). The single-distribution dispersal kernels frequently used to model dispersal substantially underestimated this variance and poorly fit the simulated seed-dispersal curve, primarily because of its multimodality, and a mixture distribution always fit the simulated dispersal curve better. Both seed shadow heterogeneity and dispersal curve multimodality arose directly from these different dispersal processes generated by spider monkeys. Compared to models that did not account for disperser behavior, our modeling approach improved prediction of the seed shadow of this V. calophylla population. An important function of seed dispersal models is to use the seed shadows they predict to estimate components of plant demography, particularly seedling population dynamics and distributions. Our model demonstrated that improved seed shadow prediction for animal-dispersed plants can be accomplished by incorporating spatially explicit information on disperser behavior and movements, using scales large enough to capture routine long-distance dispersal, and using dispersal kernels, such as mixture distributions, that account for spatially aggregated dispersal.  相似文献   

17.
A fundamental way in which animal-dispersed plants can influence the viability and distribution of dispersed seeds is through control of retention time in the guts of dispersers. Using two species of wild chilies and their dispersers, we examined how chemical and physical properties of fruits and seeds mediate this interaction. Capsicum chacoense is polymorphic for pungency, occurs in Bolivia, and is dispersed mostly by elaenias. Capsicum annuum is not polymorphic, occurs in Arizona (USA), and is dispersed mostly by thrashers. We first tested whether capsaicin, the substance responsible for the pungency of chilies, affects gut retention time of seeds in primary dispersers. Capsaicin slowed gut passage of seeds but did so in a manner that differed greatly between bird species because the constipative effects of capsaicin occurred only after an 80-minute time lag. Elaenias in Bolivia held only 6% of C. chacoense seeds for > 80 minutes, whereas thrashers in Arizona held 78% of C. annuum seeds for > 80 minutes. Next we examined the effects of retention time on seed viability and germination. Increased retention resulted in a greater proportion of seeds germinating in C. annuum, had no effects on non-pungent C. chacoense, and had negative effects on pungent C. chacoense. These divergent effects are explained by differences in seed coat morphology: seed coats of pungent C. chacoense are 10-12% thinner than those of the other two types of seeds. Thus, longer retention times damaged seeds with the thinnest seed coats. In C. annuum, seed viability remained high regardless of retention time, but germination increased with retention, suggesting a role for scarification. Thus, in C. annuum, fruit chemistry appears well matched with seed morphology and disperser physiology: capsaicin extends gut retention for most seeds, resulting in greater seed scarification and higher germination rates. Increased retention of pungent C. chacoense seeds is detrimental, but because the primary consumers have short retention times, capsaicin slows only a small proportion of seeds, minimizing negative effects. These results illustrate the importance of context in studies of fruit secondary metabolites. The same chemical can have different impacts on plant fitness depending on its morphological, physiological, and ecological context.  相似文献   

18.
Loayza AP  Knight T 《Ecology》2010,91(9):2684-2695
We examined the effect of seed dispersal by Purplish Jays (Cyanocorax cyanomelas; pulp consumers) and the Chestnut-eared Ara?ari (Pteroglossus castanotis; "legitimate" seed dispersers) on population growth of the small tree Guettarda viburnoides (Rubiaceae) in northeastern Bolivian savannas. Because each bird species differs with respect to feeding and post-feeding behavior, we hypothesized that seed dispersal by each species will contribute differently to the rate of increase of G. viburnoides, but that seed dispersal by either species will increase population growth when compared to a scenario with no seed dispersal. To examine the effects of individual dispersers on the future population size of G. viburnoides, we projected population growth rate using demographic models for G. viburnoides that explicitly incorporate data on quantitative and qualitative aspects of seed dispersal by each frugivore species. Our model suggests that seed dispersal by C. cyanomelas leads to positive population growth of G. viburnoides, whereas seed dispersal by P. castanotis has a detrimental effect on the population growth of this species. To our knowledge, this is the first study to report negative effects of a "legitimate" seed disperser on the population dynamics of the plant it consumes. Our results stress the importance of incorporating frugivore effects into population projection matrices, to allow a comprehensive analysis of the effectiveness of different dispersers for plant population dynamics.  相似文献   

19.
The photosynthetic adaptive features of non-dormant seeds in Posidonia oceanica were studied in order to evaluate the effects of light on germination success. Transmission electron micrographs showed the presence of chloroplasts in the epidermal cells, close to the nucleus at the periphery of the cytoplasm. The well-developed thylakoid membranes and the presence of starch granules indicated that the chloroplasts were photosynthetically active. The relationship between photosynthesis versus irradiance in P. oceanica seeds incubated at 15 and 21°C was analysed. The net photosynthesis in the non-dormant seed of P. oceanica was positive and compensated its respiration demand (90 μmol quanta m−2 s−1) at both temperatures. Net photosynthesis was negative at the other irradiance values. To test the effects of light on germination success, seeds were placed both in dark and light conditions. Germination success was significantly higher in light rather than in dark condition. The characteristics observed in the photosynthesis in P. oceanica seed could be a mechanism to guarantee seedling survival in temperate waters, demonstrating though the specialized nature of this species.  相似文献   

20.
Abstract:  The sustainability of seed extraction from natural populations has been questioned recently. Increased recruitment failure under intense seed harvesting suggests that seed extraction intensifies source limitation. Nevertheless, areas where more seeds are collected tend to also have more intense hunting of seed-dispersing animals. We studied whether such hunting, by limiting disperser activity, could cause quantitative dispersal limitation, especially for large crops and for crops in years of high seed abundance. In each of four Carapa procera (Meliaceae) populations in French Guiana and Surinam, two with hunting and two without, we compared seed fate for individual trees varying in crop size in years of high and low population-level seed abundance. Carapa seeds are a nontimber forest product and depend on dispersal by scatter-hoarding rodents for survival and seedling establishment. Hunting negatively affected the proportion of seeds dispersed and caused greater numbers of seeds to germinate or be infested by moths below parent trees, where they would likely die. Hunting of seed-dispersing animals disproportionally affected large seed crops, but we found no additional effect of population-level seed abundance on dispersal rates. Consistently lower rates of seed dispersal, especially for large seed crops, may translate to lower levels of seedling recruitment under hunting. Our results therefore suggest that the subsistence hunting that usually accompanies seed collection is at the cost of seed dispersal and may contribute to recruitment failure of these nontimber forest products. Seed extraction from natural populations may affect seedling recruitment less if accompanied by measures adequately incorporating and protecting seed dispersers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号