首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transcritical CO2 Rankine cycle with liquefied natural gas (LNG) as cold source is a promising power system to utilize mid- and low-temperature heat source. Most previous works focused on thermodynamic and thermoeconomic analysis or optimization for the system. In this article, an off-design performance analysis for the system is conducted. An off-design mathematical model for the system is established to examine the variation of system performance with the variations of heat source mass flow rate and temperature. A modified sliding pressure regulation control strategy, which regulates turbine inlet pressure to keep the temperature difference between heat source temperature and turbine inlet temperature constant, is applied to control the system when off-design conditions happen. The results show that when the mass flow rate or the temperature of heat source is less or lower than that of design condition, both the net power output of system and the system exergy efficiency decrease, whereas when they are more or higher than the values of design condition, the net power output of system increases but the system exergy efficiency still decreases. In addition, both CO2 turbine and NG turbine could almost keep the designed efficiency values under the applied control strategy.  相似文献   

2.
An organic Rankine cycle (ORC) is generally used for converting low-grade heat into electricity. In this study, an extensive literature survey was conducted to identify current research gaps on experimental ORC systems. Specifically, there is limited experimental data and limited details on thermal and expander efficiencies of ORC systems. In order to address these gaps, the objective of this study included developing a turbine ORC with a power output exceeding 50 kW and thermal efficiency exceeding 8% for a heat source temperature < 120°C. The experimental results indicated that the system achieved a net power output of 242.5 kW and a thermal efficiency of 8.3% (the highest value for a turbine ORC system for the heat source temperature below 120°C). Thus, the study addressed the gaps identified in the research area of ORCs.  相似文献   

3.
Due to the existing huge biogas resource in the rural area of China, biogas is widely used for production and living. Cogeneration system provides an opportunity to realize the balanced utilization of the renewable energy such as biogas and solar energy. This article presented a numerical investigation of a hybrid energy-driven organic Rankine cycle (ORC) cogeneration system, involving a solar ORC and a biogas boiler. The biogas boiler with a module of solar parabolic trough collectors (PTCs) is employed to provide heat source to the ORC via two distinct intermediate pressurized circuits. The cogeneration supplied the power to the air-condition in summer condition and hot water, which is heated in the condenser, in winter condition. The system performance under the subcritical pressures has been assessed according to the energy–exergy and economic analysis with the organic working fluid R123. The effects of various parameters such as the evaporation and condensation temperatures on system performance were investigated. The net power generation efficiency of the cogeneration system is 11.17%, which is 25.8% higher than that of the base system at an evaporation temperature 110°C. The exergy efficiency of ORC system increases from 35.2% to 38.2%. Moreover, an economic analysis of the system is carried out. The results demonstrate that the profits generated from the reduction of biogas fuel and electricity consumption can lead to a significant saving, resulting in an approximate annual saving from $1,700 to $3,000. Finally, a case study based on the consideration of typical rural residence was performed, which needs a payback period of 7.8 years under the best case.  相似文献   

4.
The Influence of mixed and pure working fluids on the performance of organic Rankine cycles (ORCs) is discussed. Specifically, the performance of mixed and pure working fluids is analyzed based on certain characteristics of low-temperature heat source and heat sink. A method of selecting binary zeotropic mixed working fluids that match with different heat sinks is introduced. Thermodynamic processes of ORCs for various heat sources are simulated in Matlab. The performance characteristics of pure and mixed working fluids are compared under different inlet temperatures and temperature gradients of sensible heat sources. The results demonstrate that when the initial temperature of a heat source is lower and its temperature gradient is higher, and the temperature gradient of the heat sink is higher, mixed working fluids have better performance than pure working fluids. However, for the opposite heat source and heat sink situations, pure working fluids perform better. Mixtures with low critical temperature components exhibit the best performance among all working fluids when the temperature gradient of the heat source is large. The analysis also shows that introduction of a recuperator may reduce the cycle efficiency when the heat source temperature is low and the temperature gradient of the heat source is large.  相似文献   

5.
This study examines energetic and exergetic performances of display cases’ units used in market applications depending on different refrigerants. Besides CO2 emission potential of each refrigerant based on exergetic irreversibility obtained from analyses is calculated by the method of Total Equivalent Warming Impact (TEWI). In this study, 1 kW cooling capacity and vapor compression cooling cycle is taken as reference and refrigerants of R-22, R-134a, R-404A, and R-507 together with alternative refrigerant R-407C and R152a are examined separately. According to analyses, R-404A gas, used widely in market applications, has low performance with average COP 3.89 and average exergy efficiency 55.20%. R-152a gas has the best performance by the thermodynamics parameters including COP 4.49, exergy efficiency 63.79%, and 0.23 kW power consumption and emission parameter 14097.490 ton CO2/year. Although COP is used as a criterion to evaluate the systems, this study finally emphasizes the importance of exergy analysis and TEWI method which are important methods to determine irreversibility and emission potential of the systems.  相似文献   

6.
This paper presents the performance of the solid-oxide fuel cell/gas turbine hybrid power generation system with heat recovery waste unit based on the energy and exergy analyses. The effect of air inlet temperature and air/fuel ratio on exergy destruction and network output is determined. For the numerical calculations, air inlet temperature and air fuel ratio are increased from 273 to 373 K and from 40 to 60, respectively. The results of the numerical calculations bring out that total exergy destruction quantity increases with the increase of air inlet temperature and air/fuel ratio. Furthermore, the maximum system overall first and second law efficiencies are obtained in the cases of air inlet temperature and air/fuel ratio equal to 273 K and 60, respectively, and these values are 62.09% and 54.91%.  相似文献   

7.
The performance of an intermediate-temperature proton-conducting solid oxide fuel cell (pSOFC) hybrid system is investigated in this work. The hybrid system consists of a 20-kW pSOFC, a micro gas turbine (MGT), and heat exchangers. Heat exchangers are used to recover waste heat from pSOFC and MGT. The performance of the system is analyzed by using Matlab/Simulink/Thermolib. Flow rates of air and hydrogen are controlled by assigning different stoichiometric ratio (St). St considered in this study is between 2 and 3.5 for air, and between 1.25 and 1.45 for hydrogen. Results show that the combined heat and power (CHP) efficiency increases as the fuel St decreases or air St increases. This is because lowering fuel St means fewer fuel will be wasted from the fuel cell stack, so the CHP efficiency increases. On the other hand, as air St increases, the amount of recovered waste heat increases, so does the CHP efficiency.  相似文献   

8.
A single-screw expander has been designed and manufactured independently. Based on this prototype, testing system has been built and performance experiment has been made. In this article, compressed air was used as working fluid and performance test for the prototype was finished at conditions including different rotational speed and different inlet pressure.

From the experimental data, it is shown that when inlet pressure less than 0.8MPa the output power increases with the increase of rotational speed because of not enough expansion; when inlet pressure more than 0.8MPa, the every biggest output power is appeared in the condition of rotational speed 2600 rpm. The test results also show that the total efficiency is influenced by rotational speed obviously, and the highest total efficiency of this machine is 69.64% in the condition of 3000 rpm and 15 bar.  相似文献   

9.
ABSTRACT

Energy optimization is performed on hybrid solar-geothermal power plant working according to Organic Rankine Cycle and installed in southern Tunisia. The performances of four different configurations of the power plant are studied. Mass and energy balances are established for the different compounds. The effects of the main operating parameters such as the geothermal water temperature, ambient temperature and direct normal irradiation on the power plant performances are analyzed. A code is established using Engineering Equation Solver software (EES) to perform the required calculations. Obtained results show that the hybrid solar-geothermal power plant with a heat recovery system is the most suitable configuration design giving a better overall energy efficiency of 15.77 and13.11% and a maximum net power of 1089 and 1882 kW in winter and summer, respectively. However, in the summer season, using a heat recovery system can valuable only when the water temperature is higher than 66°C. For air-cooled condenser, the suitable condensing pressure is 1 bar in winter and 1.9 bars in summer.  相似文献   

10.
The ISCC technology representing an integrated solar combined cycle and the economic assessment of ISCC are investigated. Comparisons conducted by theoretical calculation method among two cases, that is, an integrated solar combined cycle system (ISCCS) and a combined cycle gas turbine system (CCGTS) show that ISCCS provides the best solution with the highest efficiency of heat to electricity among them. The results reflected by theoretical calculation also reveal that ISCCS is beneficial to energy saving and emission reduction. Due to the great advantages of ISCC, comprehensive analysis on the basic conditions for building ISCC power plants is analyzed in detail.  相似文献   

11.
ABSTRACT

First and second law approaches have been used to analyze the performance of a humidified Brayton/Brayton power cycle. The energy efficiency and exergy destruction rates consistently improved when the combustion temperature was increased. Both performance indicators improved, reached an optimum, and then deteriorated when the topping cycle pressure ratio increased, while their sensitivity to the bottoming cycle pressure ratio depended on the humidification rate used at the bottoming cycle. Upon increasing the mass flowrate of air through the bottoming cycle, the energy efficiency of the power cycle increased linearly, while the irreversibility generation had a non-monotonic variation. In all cases, a higher degree of humidification always resulted in greater first and second law performances.  相似文献   

12.
对脉冲电晕等离子体技术净化有机污染物二甲苯进行了实验研究,考察了脉冲峰值电压、脉冲频率、气体流量、气体入口质量浓度等因素对净化效率的影响。结果表明:二甲苯去除率随脉冲峰值电压、脉冲频率的增大而升高,随气体流量、气体进口质量浓度的增大而降低。该方法对低浓度、大流量的二甲苯废气能达到较好的去除效果,最高去除率可达87.4%。  相似文献   

13.
Exergo-economic analysis of the pinch point temperature difference (PPTD) in both evaporator and condenser of sub-critical organic Rankine cycle system (ORCs) are performed based on the first and second laws of thermodynamics. Taking mixture R13I1/R601a as a working fluid and the annual total cost per net output power Z as exergo-economic performance evaluation criterion, the effects of PPTD in evaporator ΔTe, and the PPTD ratio of condenser to evaporator y, on the exergo-economic performance of ORCs are analyzed. Moreover, how some other parameters influence the optimal PPTD in evaporator ΔTe,opt and the optimal PPTD ratio of condenser to evaporator yopt are also discussed. It has been found that the exergo-economic performance of ORCs is remarkably influenced by ΔTe and y, and there exists ΔTe,opt and yopt. In addition, ΔTe,opt and yopt are affected by heat transfer coefficient ratio of condenser to evaporator ß, the temperature of working fluid at dew point in condenser T1a, and composition of R13I1/R601a: larger ß and T1a lead to lower ΔTe,opt and yopt; by contraries, larger mass fraction of R13I1 makes ΔTe,opt and yopt increase, and yopt increases linearly. The effects of the temperature of working fluid at bubble point in evaporator T3a, mass flow rate of exhaust flue gas mg, and inlet temperature of exhaust flue gas Tgi on ΔTe,opt and yopt are very slight. For comparison, three additional working fluids, namely R601a, R245fa, and 0.32R245fa/0.68R601a, are also taken into account.  相似文献   

14.
In this paper, the power output of the cycle is taken as objective for performance optimization of an irreversible regenerated closed Brayton cycle coupled to constant-temperature thermal energy reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power output and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, and the pressure drop loss in the piping. The maximum power output optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power output among the hot- and cold-side heat exchangers and the regenerator for the fixed total heat exchanger inventory. The influence of some design parameters, including the temperature ratio of the heat reservoirs, the total heat exchanger inventory, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution and the maximum power output are provided. The power plant design with optimization leads to smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers and the regenerator.  相似文献   

15.
ABSTRACT

Aquaculture raceway temperature has a direct impact on the aquatic specie being reared. In regions that undergo significant seasonal temperature variations, the thermal management of the raceway temperature becomes a challenge, directly impacting the production yield. This study investigates a novel approach to regulate the raceway temperature in a sustainable way by utilizing geothermal energy. A numerical energy model was developed to simulate heat transfer in a geothermal system encompassing both the individual borehole heat exchangers and their thermal interactions. Simulations were conducted for different configurations of the geothermal system over a complete seasonal cycle. Results show that flow rate, number of boreholes and the borehole spacing influence the temperature of the fluid at the raceway inlet. An increase in the number of boreholes provided better thermal regulation but an increase in the flow rate through the boreholes provided less thermal regulation. A borehole spacing of 6 m was found to be appropriate to reduce thermal interference. It was also observed that an increase in the fraction of the fluid passed through the geothermal system enhances the overall thermal regulation, with higher thermal regulation at lower flow rates. Results show that when 100% of the fluid passed through a 64 boreholes geothermal system, the average regulated raceway inlet temperature was 23% higher in winter months and 16% lower in summer months at the flow rate of 21.5 L/s compared to than at 43 L/s.  相似文献   

16.
With the drastic decrease in fossil resources and rapid deterioration of the global environment, the utilization of geothermal resources has been strongly advocated. The combination of heat, power, and cold utility generation is commonly used to increase the utilization efficiency of geothermal resources. In this study, an integrated cascade utilization system of waste geothermal water (ICUWGW) from a flash geothermal power plant in China is established to increase the utilization efficiency of geothermal water. The waste geothermal water leaving the power plant is proposed for further use in cascade for two-stage LiBr/H2O absorption cooling, agricultural product drying, and residential bathing. Twelve candidate temperature schemes showing different inlet and outlet temperatures of every subsystem are proposed for the ICUWGW. Several criteria are selected for the evaluation and screening of the candidate schemes. Grey relational analysis incorporating analytic hierarchy process is conducted to screen the optimal temperature scheme for the ICUWGW to meet the comprehensive criteria of thermodynamics and economics. Results show that the optimal scheme features significant improvement in energy efficiency, exergy efficiency, and equivalent electricity generation efficiency compared with those of the current geothermal power plant. The investment payback time of the additional subsystems for cooling, drying, and bathing is 1.85 years. Exergy analysis is also conducted to determine the further optimization potential of the optimal ICUWGW. Sensitivity analysis of electricity price on the performance of the optimal ICUWGW is also performed.  相似文献   

17.
综述国内外烟气余热利用技术的研究及应用现状,主要包括热能直接回收、吸收式制冷、有机朗肯循环和温差发电等方式。结合气田开采实际,分析讨论各类余热利用技术在气田增压机组烟气余热利用中的应用潜力和发展方向。在选择余热利用方案时,应结合气田增压机组现有条件、机组性能以及运行模式等因素进行综合评估。  相似文献   

18.
These two part papers analyse three plant configurations for high efficiency, near-zero emissions power generation from coal, suitable for long-term installations. In the first part the Zecomix cycle, a novel power plant based on various innovative processes, is presented. Zecomix plant is based on a coal hydrogasification process, using recycled steam and hydrogen as gasifying agents, to produce a CH4 rich syngas. Methane is then converted to an H2/H2O based syngas and CO2 is captured, by reacting in two carbonator reactors with CaO-based solid sorbent. CaCO3 produced in carbonators is thermally regenerated in a calciner. The synthetic fuel is burned with oxygen in a semi-closed high temperature steam cycle, with a supercritical heat recovery.The paper presents a detailed analysis of the thermodynamic aspects of the process, with the scope of assessing its potential performance in terms of efficiency and emissions. Main operating parameters of the chemical island (e.g. hydrogasifier and calciner pressure, steam flow rates to carbonators, syngas recycle fraction) and of the power island (e.g. pressure ratio, turbine inlet temperature and reheat pressure) were varied in order to evaluate their effect on plant performance and to optimize the process. Critical issues are specifically discussed: the calcination process, the calcium oxide utilization in carbonators, the cooling requirement of the high temperature turbine, the presence of incondensable species in the steam cycle. An accurate performance estimation is therefore developed by considering advanced components, as an evolution of today's technology, excluding unproven devices whose feasibility cannot be anticipated.Depending on sorbent utilization, a net plant efficiency of 44–47% with a virtually complete carbon capture was obtained, a very interesting result with respect to other proposed coal-fired power plants with carbon capture. The high complexity of the chemical island and the importance of a good sorbent performance should be however taken into account for a fair comparison with other plant concepts. Further experimental investigations are mandatory to demonstrate the technical and economical feasibility of the Zecomix plant.  相似文献   

19.
In this study, a cycle designed for capturing the greenhouse gas CO2 in a natural gas combined cycle power plant has been analyzed. The process is a pre-combustion CO2 capture cycle utilizing reforming of natural gas and removal of the carbon in the fuel prior to combustion in the gas turbine. The power cycle consists of a H2-fired gas turbine and a triple pressure steam cycle. Nitrogen is used as fuel diluent and steam is injected into the flame for additional NOx control. The heat recovery steam generator includes pre-heating for the various process streams. The pre-combustion cycle consists of an air-blown auto-thermal reformer, water–gas shift reactors, an amine absorption system to separate out the CO2, as well as a CO2 compression block. Included in the thermodynamic analysis are design calculations, as well as steady-state off-design calculations. Even though the aim is to operate a plant, as the one in this study, at full load there is also a need to be able to operate at part load, meaning off-design analysis is important. A reference case which excludes the pre-combustion cycle and only consists of the power cycle without CO2 capture was analyzed at both design and off-design conditions for comparison. A high degree of process integration is present in the cycle studied. This can be advantageous from an efficiency stand-point but the complexity of the plant increases. The part load calculations is one way of investigating how flexible the plant is to off-design conditions. In the analysis performed, part load behavior is rather good with efficiency reductions from base load operation comparable to the reference combined cycle plant.  相似文献   

20.
ABSTRACT

Cold chain industry has a vast potential for waste heat recovery. It is a matter of importance for energy efficiency point of view, as global energy demand is increasing day by day. Ample amount of low-grade energy is either unutilized or underutilized. The heat rejected by a Heat pump or refrigeration system emerged as a promising solution for dehydration by utilizing low-grade waste heat despite higher investment. As compared to solar drying technology, heat pump drying evolved as a reliable method regarding better process control, energy efficiency, and quality of the product to be dried. Energy utilized through the refrigeration system’s waste/exhaust heat recovery in combination with or without renewable energy source enhances the overall efficiency of the system and also reduces the cost. This useful review investigated and compared the research findings of waste heat utilization through heat pump and from condenser of refrigeration system on laboratory, pilot as well as industrial scale for drying of various fruits, vegetables, and agro products. Various drying parameters like drying rate, moisture content, Specific Moisture Extraction Rate (SMER), Coefficient of Performance (COP), Exergy efficiency, and temperature as well as humidity conditions inside the drying chamber were also reviewed to promote the technological advancement of energy utilization by commercial cold storage waste heat recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号