首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
India being a developing economy dependent on climate-sensitive sector like agriculture is highly vulnerable to impacts of global climate change. Vulnerability to climate change, however, differs spatially within the country owing to regional differences in exposure, sensitivity, and adaptive capacity. The study uses the Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) climate projections to assess the dynamics in vulnerability across four climate change exposure scenarios developed using Representative Concentration Pathways (RCPs). The analysis was carried out at subnational (district) level; the results were interpreted and reported for their corresponding agro-ecological zones. Vulnerability of each district was quantified using indicators capturing climatic variability, ecological and demographic sensitivity, and socio-economic capacity. Our analysis further assigns probabilities to vulnerability classes of all the 579 districts falling under different agro-ecological zones. The results of the vulnerability profile show that Western plains, Northern plains, and central highlands of the arid and semi-arid agro-ecological zones are the most vulnerable regions in the current scenario (1950–2000). In the future scenario (2050), it extends along districts falling within Deccan plateau and Central (Malwa) highlands, lying in the arid and semi-arid zones, along with regions vulnerable in the current scenario, recording the highest vulnerability score across all exposure scenarios. These regions exhibit highest degree of variation in climatic parameters, ecological fragility, socio-economic marginality, and limited accessibility to resources, generating conditions of high vulnerability. The study emphasizes on the priority to take up adaptive management actions in the identified vulnerable districts to not only reduce risks of climate change, but also enhance their inherent capacity to withstand any future changes in climate. It provides a systematic approach to explicitly identify vulnerable regions, where regional planners and policy makers can build on existing adaptation decision-making by utilizing an interdisciplinary approach in the context of global change scenario.  相似文献   

2.
We make an assessment of the impact of projected climate change on forest ecosystems in India. This assessment is based on climate projections of the Regional Climate Model of the Hadley Centre (HadRM3) and the dynamic global vegetation model IBIS for A2 and B2 scenarios. According to the model projections, 39% of forest grids are likely to undergo vegetation type change under the A2 scenario and 34% under the B2 scenario by the end of this century. However, in many forest dominant states such as Chattisgarh, Karnataka and Andhra Pradesh up to 73%, 67% and 62% of forested grids are projected to undergo change. Net Primary Productivity (NPP) is projected to increase by 68.8% and 51.2% under the A2 and B2 scenarios, respectively, and soil organic carbon (SOC) by 37.5% for A2 and 30.2% for B2 scenario. Based on the dynamic global vegetation modeling, we present a forest vulnerability index for India which is based on the observed datasets of forest density, forest biodiversity as well as model predicted vegetation type shift estimates for forested grids. The vulnerability index suggests that upper Himalayas, northern and central parts of Western Ghats and parts of central India are most vulnerable to projected impacts of climate change, while Northeastern forests are more resilient. Thus our study points to the need for developing and implementing adaptation strategies to reduce vulnerability of forests to projected climate change.  相似文献   

3.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

4.
This paper discusses the conceptual basis for linking development policies and climate change adaptation and mitigation and suggests an analytical approach that can be applied to studies in developing countries. The approach is centred on a broad set of policy evaluation criteria that merge traditional economic and sectoral goals and broader social issues related to health and income distribution. The approach is inspired by institutional economics and development paradigms that emphasise human wellbeing, resource access, empowerment, and the arrived freedoms. It is outlined how indicators of wellbeing can be used to assess policies that integrate development and climate change policy objectives, and this approach is discussed in comparison with other work that rather have been inspired by sustainable development aspects of manmade, natural, and social capital. The experiences and results from case studies of development and climate that have done a first attempt to use human wellbeing indicators are reported and discussed. The studies include work from India, China, South Africa, Brazil, Bangladesh, and Senegal. A number of policy examples in the energy-, food-, and water sectors in these studies have shown up to demonstrate numerous linkages between development policies and climate change. Various analytical tools have been used in the studies including quantitative and qualitative scenario work as well as detailed micro-based analysis. The methodological conclusion that can be drawn from these studies, is that it is possible to apply wellbeing indicators to the more detailed policy assessment, but a link to more general national and regional scenario work is not yet established.  相似文献   

5.
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m2/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (−5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (−2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS—a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.  相似文献   

6.
Motivation plays a powerful role in guiding human decision-making and behaviour, including adaptation to climate change. This study aimed to determine whether community-based governance would increase behavioural support, in the form of donation behaviour, for a climate change adaptation trust fund. A sample of 548 Australians was randomly assigned to view one of two governance scenarios: (1) a community-based scenario in which community members were afforded a high level of autonomy in designing and allocating funding within a trust fund to help their community adapt to climate change, or (2) a government-centred scenario in which decision making regarding the trust fund remained with government officials. Path analysis revealed that the community-based scenario produced significantly higher levels of perceived autonomy support within the study’s participants. High levels of perceived autonomy support predicted higher levels of autonomous motivation (indicating stronger citizenship) and lower levels of amotivation, a motivational pattern, which, in turn, predicted greater willingness to donate to the climate change adaptation trust. Results are interpreted in terms of Self-Determination Theory and Motivational Crowding Theory.  相似文献   

7.
汶川地震灾区不同气候区土壤微生物群落碳源代谢多样性   总被引:6,自引:2,他引:4  
为探讨汶川地震灾区不同气候区土壤微生物群落功能代谢的变化,采用Biolog-ECO生态板技术,研究了亚热带湿润季风气候和半干旱干热河谷气候未受损区、受损治理区、受损未治理区土壤微生物碳源代谢的多样性变化特征.结果表明,平均颜色变化率(AWCD)在未受损区和受损治理区表现为亚热带湿润季风气候区半干旱干热河谷气候区,在受损未治理区表现为半干旱干热河谷气候区亚热带湿润季风气候区,不同气候区内受损未治理区AWCD值均处于最低水平;亚热带湿润季风气候区土壤微生物的碳源利用类型明显多于半干旱干热河谷气候区,在不同气候类型区内碳源利用种类均表现为受损治理区未受损区受损未治理区的趋势;不同气候区土壤微生物群落碳源代谢多样性特征差异显著,其中多样性指数和均匀度指数均表现为未受损区受损治理区受损未治理区,而受损治理区均具有最高的丰富度指数;土壤微生物群落的碳源代谢特征与土壤养分、地上植被生物量及植被覆盖度具有一定的相关性,表明地震及其次生灾害主要通过对地表植被和土壤环境的作用间接影响土壤微生物群落的碳源利用能力,在不同气候类型区与不同的受损治理情况下土壤微生物群落的碳源代谢特征具有显著差异.  相似文献   

8.
The paper estimates and compares the level of Reducing Emissions from Deforestation and Degradation (REDD+) payments required to compensate for the opportunity costs (OCs) of stopping the conversion of montane forest and miombo woodlands into cropland in two agro-ecological zones in Morogoro Region in Tanzania. Data collected from 250 households were used for OC estimation. REDD+ payment was estimated as the net present value (NPV) of agricultural rent and forest rent during land clearing, minus net returns from sustainable wood harvest, divided by the corresponding reduction in carbon stock. The median compensation required to protect the current carbon stock in the two vegetation types ranged from USD 1 tCO2e?1 for the montane forest to USD 39 tCO2e?1 for the degraded miombo woodlands, of which up to 70 % and 16 %, respectively, were for compensating OCs from forest rent during land clearing. The figures were significantly higher when the cost of farmers’ own labor was not taken into account in NPV calculations. The results also highlighted that incentives in the form of sustainable harvests could offset up to 55 % of the total median OC to protect the montane forest and up to 45 % to protect the miombo woodlands, depending on the wage rates. The findings suggest that given the possible factors that can potentially affect estimates of REDD+ payments, avoiding deforestation of the montane forest would be feasible under the REDD+ scheme. However, implementation of the policy in villages around the miombo area would require very high compensation levels.  相似文献   

9.
A method is presented for estimating the global warming impact of forest biomass life cycles with respect to their functionally equivalent alternatives based on fossil fuels and non-renewable material sources. In the method, absolute global warming potentials (AGWP) of both the temporary carbon (C) debt of forest biomass stock and the C credit of the biomass use cycle displacing the fossil and non-renewable alternative are estimated as a function of the time frame of climate change mitigation. Dimensionless global warming potential (GWP) factors, GWPbio and GWPbiouse, are derived. As numerical examples, 1) bioenergy from boreal forest harvest residues to displace fossil fuels and 2) the use of wood for material substitution are considered. The GWP-based indicator leads to longer payback times, i.e. the time frame needed for the biomass option to be superior to its fossil-based alternative, than when just the cumulative balance of biogenic and fossil C stocks is considered. The warming payback time increases substantially with the residue diameter and low displacement factor (DF) of fossil C emissions. For the 35-cm stumps, the payback time appears to be more than 100 years in the climate conditions of Southern Finland when DF is lower than 0.5 in instant use and lower than 0.6 in continuous stump use. Wood use for construction appears to be more beneficial because, in addition to displaced emissions due to by-product bioenergy and material substitution, a significant part of round wood is sequestered into wood products for a long period, and even a zero payback time would be attainable with reasonable DFs.  相似文献   

10.
Afforestation has the potential to offset the increased emission of atmospheric carbon dioxide and has therefore been proposed as a strategy to mitigate climate change. Here we review the opportunities for carbon (C) offsets through open lichen woodland afforestation in the boreal forest of eastern Canada as a case study, while considering the reversal risks (low productivity, fires, insect outbreaks, changes in land use and the effects of future climate on growth potential as well as on the disturbances regime). Our results suggest that : (1) relatively low growth rate may act as a limiting factor in afforestation projects in which the time available to increase C is driven by natural disturbances; (2) with ongoing climate change, a global increase in natural disturbance rates, mainly fire and spruce budworm outbreaks, may offset any increases in net primary production at the landscape level; (3) the reduction of the albedo versus increase in biomass may negatively affect the net climate forcing; (4) the impermanence of C stock linked to the reversal risks makes this scenario not necessarily cost attractive. More research, notably on the link between fire risk and site productivity, is needed before afforestation can be incorporated into forest management planning to assist climate change mitigation efforts. Therefore, we suggest that conceivable mitigation strategies in the boreal forest will likely have to be directed activities that can reduce emissions and can increase C sinks while minimizing the reversal impacts. Implementation of policies to reduce Greenhouse Gases (GHG) in the boreal forest should consider the biophysical interactions, the different spatial and temporal scales of their benefits, the costs (investment and benefits) and how all these factors are influenced by the site history.  相似文献   

11.
Nowadays, it is widely acknowledged that climate change will affect mining industry and may pose significant risks to the economic viability of mining enterprises. So far, the vast majority of recent research efforts on this subject have focused, not surprisingly, on mining activities operating in northern areas. Nevertheless, climate change is an issue that should be of concern for all mining industry, worldwide. For this reason, this paper addresses the impacts of climate change on mining industry in the Mediterranean Region, and specifically Greece, and attempts, for the first time, to estimate the cost of climate change-related risks to the sector by means of a ??top-down?? approach. Towards this direction, climate projections based on the United Nations International Panel on Climate Change (IPCC) A1B emission scenario (which refers to a fast global economic growth, global population that peaks mid-century and then decreases, and a rapid introduction of new and more efficient technologies and a balanced energy source mix) for the time period 2021?C2050 are compared to climate data for the time period 1991?C2000, in order to quantify the impacts in physical terms. Then, both secondary and primary data sources are used to monetize the cost of climate change impacts to mining enterprises. Although there exist certain limitations in the research due to data unavailability, the study reveals the importance of the problem and provides useful findings. More specifically, the estimates indicate that Greece??s mining industry could face economic losses from climate change as high as US$0.8 billion. The cost of adaptation measures is about US$312 million, while that of mitigation measures that will burden the sector through the increased electricity prices is about US$478 million.  相似文献   

12.
The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.  相似文献   

13.
Fresh water is one of the most important resources required for human existence, and ensuring its stable supply is a critical issue for sustainable development. The effects of a general set of agriculture and water management adaptations on the size of the world’s water-stressed population were assessed for a specific but consistent scenario on socio-economic development and climate change during the 21st century. To maintain consistency with agricultural land use change, we developed a grid-based water supply–demand model integrated with an agro-land use model and evaluated the water-stressed population using a water withdrawals-to-availability ratio for river basins. Our evaluation shows that, if no adaptation options are implemented, the world’s water-stressed population will increase from 1.8 billion in 2000 to about 3.3 billion in 2050, and then remain fairly constant. The population and economic growth rather than climate change will be dominant factors of this increase. Significant increase in the water-stressed population will occur in regions such as North Africa and the Middle East, India, Other South Asia, China and Southeast Asia. The key adaptation options differ by region, depending on dominant crops, increase in crop demand and so on. For instance, ‘improvement of irrigation efficiency’ and ‘enhancement of reclamation water’ seem to be one of important options to reduce the water stress in Southeast Asia, and North Africa and the Middle East, respectively. The worldwide implementation of adaptation options could decrease the water-stressed population by about 5 % and 7–17 %, relative to the scenario without adaptations, in 2050 and 2100, respectively.  相似文献   

14.
Projecting staple crop production including wheat under future climate plays a fundamental role in planning the required adaptation and mitigation strategies for climate change effects especially in developing countries. The main aim of this study was to investigate the direction and magnitude of climate change impacts on grain yield of rainfed wheat (Triticum aestivum L.) production and precipitation within growing season. This study was performed for various regions in Khorasan province which is located in northeast of Iran. Climate projections of two General Circulation Models (GCM) for four locations under three climate change scenarios were employed in this study for different future time periods. A stochastic weather generator (LARS-WG5) was used for downscaling to generate daily climate parameters from GCMs output. The Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 was employed to evaluate rainfed wheat performance under future climate. Grain yield of rainfed wheat and precipitation during growth period considerably decreased under different scenarios in various time periods in contrast to baseline. Highest grain yield and precipitation during growth period was obtained under B1 scenario but A1B and A2 scenarios resulted in sharp decrease (by ?57 %) of grain yield. Climate change did not have marked effects on evapotranspiration during the rainfed wheat growth. A significant correlation was detected between grain yield, precipitation and evapotranspiration under climate change for both GCMs and under all study scenarios. It was concluded, that rainfed wheat production may decline during the next 80 years especially under A2 scenario. Therefore, planning the comprehensive adaptation and mitigation program is necessary for avoiding climate change negative impact on rainfed wheat production.  相似文献   

15.
Climate change, involving changes in mean climate and climatic variability, is expected to severely affect agriculture and there is a need to assess its impact in order to define the appropriate adaptation strategies to cope with. In this paper, we projected a scenario of European agriculture in a +2°C (above pre-industrial levels) world in order to assess the potential effect of climatic change and variability and to test the effectiveness of different adaptation options. For this purpose, the outputs of HadCM3 General Circulation Model (GCM) were empirically downscaled for current climate (1975–2005) and a future period (2030–2060), to feed a process-based crop simulation model, in order to quantify the impact of a changing climate on agriculture emphasising the impact due to changes in the frequency of extreme events (heat waves and drought). The same climatic dataset was used to compare the effectiveness of different adaptations to a warmer climate strategies including advanced or delayed sowing time, shorter or longer cycle cultivar and irrigation. The results indicated that both changes in mean climate and climate variability affected crop growth resulting in different crop fitting capacity to cope with climate change. This capacity mainly depended on the crop type and the geographical area across Europe. A +2°C scenario had a higher impact on crops cultivated over the Mediterranean basin than on those cultivated in central and northern Europe as a consequence of drier and hotter conditions. In contrast, crops cultivated in Northern Europe generally exhibited higher than current yields, as a consequence of wetter conditions, and temperatures closer to the optimum growing conditions. Simple, no-cost adaptation options such as advancement of sowing dates or the use of longer cycle varieties may be implemented to tackle the expected yield loss in southern Europe as well as to exploit possible advantages in northern regions.  相似文献   

16.
Future climate change directly impacts crop agriculture by altering temperature and precipitation regimes, crop yields, crop enterprise net returns, and net farm income. Most previous studies assess the potential impacts of agricultural adaptation to climate change on crop yields. This study attempts to evaluate the potential impacts of crop producers’ adaptation to future climate change on crop yield, crop enterprise net returns, and net farm income in Flathead Valley, Montana, USA. Crop enterprises refer to the combinations of inputs (e.g., land, labor, and capital) and field operations used to produce a crop. Two crop enterprise adaptations are evaluated: flexible scheduling of field operations; and crop irrigation. All crop yields are simulated using the Environmental Policy Integrated Climate (EPIC) model. Net farm income is assessed for small and large representative farms and two soils in the study area. Results show that average crop yields in the future period (2006–2050) without adaptation are between 7% and 48% lower than in the historical period (1960–2005). Flexible scheduling of the operations used in crop enterprises does not appear to be an economically efficient form of crop enterprise adaptation because it does not improve crop yields and crop enterprise net returns in the future period. With irrigation, crop yields are generally higher for all crop enterprises and crop enterprise net returns increase for the canola and alfalfa enterprises but decrease for all other assessed crop enterprises relative to no adaptation. Overall, average crop enterprise net return in the future period is 45% lower with than without irrigation. Net farm income decreases for both the large and small representative farms with both flexible scheduling and irrigation. Results indicate that flexible scheduling and irrigation adaptation are unlikely to reduce the potential adverse economic impacts of climate change on crop producers in Montana’s Flathead Valley.  相似文献   

17.
A sustainable forestry scenario aimed at meeting the projected biomassdemands, halting deforestation and regenerating degraded forests wasdeveloped and analyzed for additionality of mitigation and cost-effectivenessfor India. Similarly, mitigation potential of a commercial forestry scenarioaimed at meeting the biomass demands from forestry activities on privateland was assessed. India has a significant scale baseline scenario afforestationand effective forest conservation activities. India is afforesting at an averagegross rate of 1.55 × 106 ha yr-1 over the past 10 years, while the gross deforestation rate was 0.272 × 106 ha yr-1 during the same period. The sustainable forestry scenario could lead to an additional carbon (C) stock of 237 × 106 Mg C during 2000 to 2012, while the commercial forestry scenario apart from meeting all the incremental biomass demands (estimated for 2000 to 2015) could potentially lead to an additional carbon stock of 78 × 106Mg C during 2000 to 2012. Short- and Long-rotation forestry activities arecommercially viable. With appropriate policies and financial incentives allthe industrial wood, sawnwood and commercial fuelwood requirementcould be met through commercial forestry, so that government funds couldbe dedicated for conserving state owned forests and meeting subsistencebiomass demands. The commercial forestry activities could receive financialsupport under greenhouse gas (GHG) abatement programmes. The government, however, needs to develop institutions and guidelines to process, evaluate, approve and monitor forestry sector mitigation projects.  相似文献   

18.
This paper addresses methodological issues in estimating carbon (C) sequestration potential, baseline determination, additionality and leakage in Khammam district, Andhra Pradesh, southern part of India. Technical potential for afforestation on cultivable wastelands, fallow, and marginal croplands was considered for Eucalyptus clonal plantations. Field studies for aboveground and belowground biomass, woody litter, and soil organic carbon for baseline and project scenarios were conducted to estimate the carbon sequestration potential. The baseline carbon stock was estimated to be 45.3 t C/ha, predominately in soils. The additional carbon sequestration potential under the project scenario for 30 years is estimated to be 12.8 t C/ha/year inclusive of harvest regimes and carbon emissions due to biomass burning and fertilizer application. Considering carbon storage in harvested wood, an additional 45% carbon benefit can be accounted. The project scenario has a higher benefit/cost ratio compared to the baseline scenario. The initial investment cost requirement, however, is high and lack of access to investment is a significant barrier for adoption of agroforestry in the district.
N. H. RavindranathEmail:
  相似文献   

19.
气候变化情景下湿地净初级生产力风险评价   总被引:1,自引:0,他引:1  
刘夏  王毅勇  范雅秋 《中国环境科学》2015,35(12):3762-3770
采用BIOME-BGC模型,模拟了气候变化情景下(A1B, A2, B2)三江平原富锦地区小叶章(Calamagrostis angustifolia)湿地的净初级生产力(NPP)变化,并通过NPP变化情况评价小叶章湿地风险等级.结果表明:未来30年(2013~2042年)各气候情景下富锦小叶章湿地NPP均值均高于基准期均值(1961~1990), A1B和B2情景下未来30年间NPP波动范围变大,A2情景下NPP有降低趋势.风险评价结果表明,气候变化情景下小叶章湿地存在一定风险,尤其是在A1B情景下,未来30年中可能有6年以上的年份存在高风险,A2情景下湿地风险最低.湿地NPP变化与降水量呈显著正相关(R2=0.58,P<0.05),说明降水量是影响区域湿地的重要因素.尽管气候变化情景下假设了存在升温?CO2浓度升高等有利于植物生长的因素,但降水量的的剧烈变化以及极端气候事件的增加,可能会导致湿地在未来气候变化情景下面临较高风险,未来湿地保护与管理过程中应重点关注水的补给和调配.  相似文献   

20.
There is a need to assess climate change mitigation opportunities in forest sector in India in the context of methodological issues such as additionality, permanence, leakage and baseline development in formulating forestry mitigation projects. A case study of forestry mitigation project in semi-arid community grazing lands and farmlands in Kolar district of Karnataka, was undertaken with regard to baseline and project scenario development, estimation of carbon stock change in the project, leakage estimation and assessment of cost-effectiveness of mitigation projects. Further, the transaction costs to develop project, and environmental and socio-economic impact of mitigation project was assessed. The study shows the feasibility of establishing baselines and project C-stock changes. Since the area has low or insignificant biomass, leakage is not an issue. The overall mitigation potential in Kolar for a total area of 14,000 ha under various mitigation options is 278,380 t C at a rate of 20 t C/ha for the period 2005–2035, which is approximately 0.67 t C/ha/year inclusive of harvest regimes under short rotation and long rotation mitigation options. The transaction cost for baseline establishment is less than a rupee/t C and for project scenario development is about Rs. 1.5–3.75/t C. The project enhances biodiversity and the socio-economic impact is also significant.
N. H. RavindranathEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号