首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adaptation options in agriculture to climate change: a typology   总被引:9,自引:0,他引:9  
Adaptation in agriculture to climate change is important for impact andvulnerability assessment and for the development of climate change policy. A wide variety of adaptation options has been proposed as having thepotential to reduce vulnerability of agricultural systems to risks related toclimate change, often in an ad hoc fashion. This paper develops atypology of adaptation to systematically classify and characterize agriculturaladaptation options to climate change, drawing primarily on the Canadiansituation. In particular, it differentiates adaptation options in agricultureaccording to the involvement of different agents (producers, industries,governments); the intent, timing and duration of employment of theadaptation; the form and type of the adaptive measure; and the relationshipto processes already in place to cope with risks associated with climatestresses. A synthesis of research on adaptation options in Canadianagriculture identifies four main categories: (i) technological developments,(ii) government programs and insurance, (iii) farm production practices,and (iv) farm financial management. In addition to these `directadaptations', there are options, particularly information provision, that maystimulate adaptation initiatives. The results reveal that most adaptationoptions are modifications to on-going farm practices and public policydecision-making processes with respect to a suite of changing climatic(including variability and extremes) and non-climatic conditions (political,economic and social). For progress on implementing adaptations to climatechange in agriculture there is a need to better understand the relationshipbetween potential adaptation options and existing farm-level andgovernment decision-making processes and risk management frameworks.  相似文献   

2.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

3.
The Cameroonian agricultural sector, a critical part of the local ecosystem, is potentially vulnerable to climate change raising concerns about food security in the country’s future. Adaptations policies may be able to mitigate some of this vulnerability. This article investigates and addresses the issue of selected adaptation options within the context of Cameroonian food production. A methodology is applied where transient diagnostics of two atmosphere–ocean general circulation models, the NASA/Goddard Institute GISS and the British HadCM3, are coupled to a cropping system simulation model (CropSyst) to simulate current and future (2020, 2080) crop yields for selected key crops (bambara nut, groundnut, maize, sorghum, and soybean) in eight agricultural regions of Cameroon. Our results show that for the future, substantial yield increases are estimated for bambara groundnut, soybean and groundnut, while little or no change or even decreases for maize and sorghum yields, varying according to the climate scenario and the agricultural region investigated. Taking the “no regrets” principle into consideration, we explore the advantages of specific adaptation strategies specifically for three crops viz. maize, sorghum and bambara groundnut, under GISS A2 and B2 marker scenarios only. Changing sowing dates may be ineffective in counteracting adverse climatic effects because of the narrow rainfall band that strictly determines the timing of farm operations in Cameroon. In contrast, the possibility of developing later maturing new cultivars proved to be extremely effective in offsetting adverse impacts, giving the highest increases in productivity under different scenario projections without management changes. For example, under climate change scenario GISS A2 2080, a 14.6% reduction in maize yield was converted to a 32.1% increase; a 39.9% decrease in sorghum yield was converted to a 17.6% increase, and for bambara groundnut (an under-researched and underutilised African legume), yields were almost trebled (37.1% increase above that for sowing date alone (12.9%)) due to increase length of growing period and the positive effects of higher CO2 concentrations. These results may better inform wider studies and development strategies on sustainable agriculture in the area by providing an indication as to the potential direction in shifts in production capabilities. Our approach highlights the benefit of using models as tools to investigate potential climate change impacts, where results can supplement existing knowledge. The results provide useful guidance and motivation to public authorities and development agencies interested in food security issues in Cameroon and elsewhere.  相似文献   

4.
气候变化对鲁西北平原冬小麦产量的影响及对策   总被引:1,自引:0,他引:1  
气候变化会导致气候资源发生改变,从而引发粮食安全问题.耦合区域气候模式和作物生长模型,可定量分析气候变化导致的作物产量变动,探讨适宜的田间管理应对措施.研究以冬小麦作为研究对象,以我国粮食主产区之一的鲁西北平原作为研究区域,耦合MIROC-RegCM3区域气候模式和CERES-Wheat作物生长模型,开展A1B温室气体排放情景下,气候变化对冬小麦产量的影响及适应措施研究.结果表明,A1B气候情景下,该区域冬小麦潜在产量会有所下降;在现有管理措施的基础上,可通过培育对春化作用依赖较小的品种、 适当提早播期、 增加越冬水灌溉量等方式保证产量,减少年际间变异.该文研究结果可为应对未来气候变暖、 确保粮食安全提供参考.  相似文献   

5.
Fresh water is one of the most important resources required for human existence, and ensuring its stable supply is a critical issue for sustainable development. The effects of a general set of agriculture and water management adaptations on the size of the world’s water-stressed population were assessed for a specific but consistent scenario on socio-economic development and climate change during the 21st century. To maintain consistency with agricultural land use change, we developed a grid-based water supply–demand model integrated with an agro-land use model and evaluated the water-stressed population using a water withdrawals-to-availability ratio for river basins. Our evaluation shows that, if no adaptation options are implemented, the world’s water-stressed population will increase from 1.8 billion in 2000 to about 3.3 billion in 2050, and then remain fairly constant. The population and economic growth rather than climate change will be dominant factors of this increase. Significant increase in the water-stressed population will occur in regions such as North Africa and the Middle East, India, Other South Asia, China and Southeast Asia. The key adaptation options differ by region, depending on dominant crops, increase in crop demand and so on. For instance, ‘improvement of irrigation efficiency’ and ‘enhancement of reclamation water’ seem to be one of important options to reduce the water stress in Southeast Asia, and North Africa and the Middle East, respectively. The worldwide implementation of adaptation options could decrease the water-stressed population by about 5 % and 7–17 %, relative to the scenario without adaptations, in 2050 and 2100, respectively.  相似文献   

6.
In order for climate forecasting to be used in developing adaptation options, the forecasts should be able to affect decisions made by stakeholders in a manner that improves outcomes. The implications of this requirement for forecasting are presented under five headings: relevance, reliability, stakeholder engagement, holism and accuracy. These characteristics are elucidated through a particular focus on the use of ensemble climate and crop simulations. Resulting recommendations, including comments on mainstreaming and seamlessness, are described using the concepts of quality and value.Adaptation options can be developed using climate forecasts on a range of timescales, from days to decades. Using the five identified characteristics, two cases are presented: (i) options based on large-area seasonal crop yield forecasting are discussed, and (ii) genotypic adaptation based on long-term climate change projections is examined. For the latter, novel analyses of existing large-area groundnut simulations are used to assess the magnitude and spatial extent of the impact of changes in the mean and variability of temperature, rainfall and humidity. The genotypic properties required to ameliorate negative impacts are then assessed and compared to observations. The processes examined act on most annual crops, making the method, and to some extent the results, broadly relevant.  相似文献   

7.
As climate changes due to rising concentrations of greenhouse gases in the atmosphere, agriculture will be one of the key human activities affected. Projections show that while overall global food production in the coming decades may keep pace with the food requirements of a growing world population, climate change might worsen existing regional disparities because it will reduce crop yields mostly in lands located at lower latitudes where many developing countries are situated. Strategies to enhance local adaptation capacity are therefore needed to minimize climatic impacts and to maintain regional stability of food production. At the same time, agriculture as a sector offers several opportunities to mitigate the portion of global greenhouse gas emissions that are directly dependent upon land use, land-use change, and land-management techniques. This paper reviews issues of agriculture and climate change, with special attention to adaptation and mitigation. Specifically, as adaptation and mitigation strategies in agriculture are implemented to alleviate the potential negative effects of climate change, key synergies need to be identified, as mitigation practices may compete with modifications to local agricultural practices aimed at maintaining production and income. Under future climate and socio-economic pressures, land managers and farmers will be faced with challenges in regard to selecting those mitigation and adaptation strategies that together meet food, fiber and climate policy requirements.  相似文献   

8.
The negative impact of climate change on crop production is alarming as the demand for food is expected to increase in coming years, at a rate of about 2 percent a year. Wet season rice (Oryza sativa) followed by mustard (Brassica juncea) is one of the prominent cropping sequences in Eastern India. Descreases in their productivity due to climate change will not only hamper the regional food security but also affect the global economy. Considering the fact, the present study aims to assess the impact of climate change on productivity of wet-season rice and mustard and to evaluate the effectiveness of agronomic adjustment as adaptation options. Crop growth simulation model (CGSM) is a very effective tool to predict the growth and yield of a crop. One CGSM, namely InfoCrop (Generic Crop Model), was calibrated and validated for the said crops for West Bengal State, Eastern India. After validation, the model was used to predict the yield under elevated thermal condition (1 and 3 °C rise over normal temperature). Moreover, the future weather situation as predicted by PRECIS (Providing Regional Climates for Impacts Studies) model was used as weather input of the CGSM and the yield was predicted for ten selected locations of West Bengal for the year 2025 and 2050. It was observed that the average yield reduction of the wet-season rice would be in the tune of about 20.0 % for 2025 and 27.8 % for 2050. The mustard yield of West Bengal may be reduced by 20.0 to 33.9 % for the year 2025 and up to 40 % for 2050. It was concluded that the negative impact of climate change on mustard grown in winter season will be more pronounced compared to wet-season rice. Adjustment of sowing time will be the simplest and effective adaptation option for both rice and mustard. Increased rate of nutrient application can sustain the rice yield under future climate. The older seedling at the time of transplanting of wet-season rice and increased seed rate of mustard were proved less effective.  相似文献   

9.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

10.
Desertification, climate variability and food security are closely linked through drought, land cover changes, and climate and biological feedbacks. In Ghana, only few studies have documented these linkages. To establish this link the study provides historical and predicted climatic changes for two drought sensitive agro-ecological zones in Ghana and further determines how these changes have influenced crop production within the two zones. This objective was attained via Markov chain and Fuzzy modelling. Results from the Markov chain model point to the fact that the Guinea savanna agro-ecological zone has experienced delayed rains from 1960 to 2008 while the Sudan savanna agro-ecological zone had slightly earlier rains for the same period. Results of Fuzzy Modelling indicate that very suitable and moderately suitable croplands for millet and sorghum production are evenly distributed within the two agro-ecological zones. For Ghana to adapt to climate change and thereby achieve food security, it is important to pursue strategies such as expansion of irrigated agricultural areas, improvement of crop water productivity in rain-fed agriculture, crop improvement and specialisation, and improvement in indigenous technology. It is also important to encourage farmers in the Sudan and Guinea Savanna zones to focus on the production of cereals and legumes (e.g. sorghum, millet and soybeans) as the edaphic and climatic factors favour these crops and will give the farmers a competitive advantage. It may be necessary to consider the development of the study area as the main production and supply source of selected cereals and legumes for the entire country in order to free lands in other regions for the production of crops highly suitable for those regions on the basis of their edaphic and climatic conditions.  相似文献   

11.
India being a developing economy dependent on climate-sensitive sector like agriculture is highly vulnerable to impacts of global climate change. Vulnerability to climate change, however, differs spatially within the country owing to regional differences in exposure, sensitivity, and adaptive capacity. The study uses the Hadley Centre Global Environment Model version 2-Earth System (HadGEM-ES) climate projections to assess the dynamics in vulnerability across four climate change exposure scenarios developed using Representative Concentration Pathways (RCPs). The analysis was carried out at subnational (district) level; the results were interpreted and reported for their corresponding agro-ecological zones. Vulnerability of each district was quantified using indicators capturing climatic variability, ecological and demographic sensitivity, and socio-economic capacity. Our analysis further assigns probabilities to vulnerability classes of all the 579 districts falling under different agro-ecological zones. The results of the vulnerability profile show that Western plains, Northern plains, and central highlands of the arid and semi-arid agro-ecological zones are the most vulnerable regions in the current scenario (1950–2000). In the future scenario (2050), it extends along districts falling within Deccan plateau and Central (Malwa) highlands, lying in the arid and semi-arid zones, along with regions vulnerable in the current scenario, recording the highest vulnerability score across all exposure scenarios. These regions exhibit highest degree of variation in climatic parameters, ecological fragility, socio-economic marginality, and limited accessibility to resources, generating conditions of high vulnerability. The study emphasizes on the priority to take up adaptive management actions in the identified vulnerable districts to not only reduce risks of climate change, but also enhance their inherent capacity to withstand any future changes in climate. It provides a systematic approach to explicitly identify vulnerable regions, where regional planners and policy makers can build on existing adaptation decision-making by utilizing an interdisciplinary approach in the context of global change scenario.  相似文献   

12.
In order to assess agricultural adaptation to climate impacts, new methodologies are needed. The translog distance function allows assessing interactions between different factors, and hence the influence of management on climate impacts. The Farm Accountancy Data Network provides extensive data on farm characteristics of farms throughout the EU15 (i.e. the 15 member states of the European Union before the extension in 2004). These data on farm inputs and outputs from 1990−2003 are coupled with climate data. As climate change is not the only change affecting European agriculture, we also include effects of subsidies and other changes on inputs and outputs of farms throughout Europe. We distinguish several regions and empirically assess (1) climate impacts on farm inputs and outputs in different regions and (2) interactions between inputs and other factors that contribute to the adaptation to these impacts. Changes in production can partly be related to climatic variability and change, but also subsidies and other developments (e.g. technology, markets) are important. Results show that impacts differ per region, and that ‘actual impacts’ cannot be explicitly separated into ‘potential impacts’ and ‘adaptive capacity’ as often proposed for vulnerability assessment. Farmers adapt their practices to prevailing conditions and continuously adapt to changing conditions. Therefore, ‘potential impacts’ will not be observed in practice, leaving it as a mainly theoretical concept. Factors that contribute to the adaptation also differ per region. In some regions more fertilizers or more irrigation can mitigate impacts, while in other regions this amplifies impacts. To project impacts of future climate change on agriculture, current farm management strategies and their influence on current production should be considered. This clearly asks for improved integration of biophysical and economic models.  相似文献   

13.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

14.
If no timely measures are taken to adapt Egyptian agriculture to possible climate warming, the effects may be negative and serious. Egypt appears to be particularly vulnerable to climate change because of its dependence on the Nile River as the primary water source, its large traditional agricultural base, and its long coastline, already undergoing both intensifying development and erosion. A simulation study characterized potential yield and water use efficiency decreases on two reference crops in the main agricultural regions with possible future climatic variation, even when the beneficial effects of increased CO2 were taken into account. On-farm adaptation techniques which imply no additional cost to the agricultural system, did not compensate for the yield losses with the warmer climate or improve the crop water-use efficiency. Economic adjustments such as the improvement of the overall water-use efficiency of the agricultural system, soil drainage and conservation, land management, and crop alternatives are essential. If appropriate measures are taken, negative effects of climate change in agricultural production and other major resource sectors (water and land) may be lessened. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
16.
Most prior climate change assessments for U.S. agriculture have focused on major world food crops such as wheat and maize. While useful from a national and global perspective, these results are not particularly relevant to the Northeastern U.S. agriculture economy, which is dominated by dairy milk production, and high-value horticultural crops such as apples (Malus domestica), grapes (Vitis vinifera), sweet corn (Zea mays var. rugosa), cabbage (Brassica oleracea var. capitata), and maple syrup (sugar maple, Acer saccharum). We used statistically downscaled climate projections generated by the HadCM3 atmosphere–ocean general circulation model, run with Intergovernmental Panel on Climate Change future emissions scenarios A1fi (higher) and B1 (lower), to evaluate several climate thresholds of direct relevance to agriculture in the region. A longer (frost-free) growing season could create new opportunities for farmers with enough capital to take risks on new crops (assuming a market for new crops can be developed). However, our results indicate that many crops will have yield losses associated with increased frequency of high temperature stress, inadequate winter chill period for optimum fruiting in spring, increased pressure from marginally over-wintering and/or invasive weeds, insects, or disease, or other factors. Weeds are likely to benefit more than cash crops from increasing atmospheric carbon dioxide. Projections of thermal heat index values for dairy cows indicate a substantial potential negative impact on milk production. At the higher compared to lower emissions scenario, negative climate change effects will occur sooner, and impact a larger geographic area within the region. Farmer adaptations to climate change will not be cost- or risk-free, and the impact on individual farm families and rural communities will depend on commodity produced, available capital, and timely, accurate climate projections.  相似文献   

17.
The potential impacts of climate change on the phenology and yield of two maize varieties in Greece were studied. Three sites representing the central and northern agricultural regions were selected: Karditsa, Naoussa and Xanthi. The CERES-Maize model, embedded in the Decision Support System for Agrotechnology Transfer (DSSAT 3.0), was used for the crop simulations, with current and possible future management practices. Equilibrium doubled CO2 climate change scenarios were derived from the GISS, GFDL, and UKMO general circulation models (GCMs); a transient scenario was developed from the GISS GCM transient run A. These scenarios predict consistent increases in air temperature, small increases in solar radiation and precipitation changes that vary considerably over the study regions in Greece. Physiological effects of CO2 on crop growth and yield were simulated. Under present management practices, the climate change scenarios generally resulted in decreases in maize yield due to reduced duration of the growing period at all sites. Adaptation analyses showed that mitigation of climate change effects may be achieved through earlier sowing dates and the use of new maize varieties. Varieties with higher kernel-filling rates, currently restricted to the central regions, could be extended to the northern regions of Greece. In the central regions, new maize varieties with longer grain-filling periods might be needed.  相似文献   

18.
Agriculture consumes more than two-thirds of global fresh water out of which 90 % is used by developing countries. Freshwater consumption worldwide is expected to rise another 25 %by 2030 due to increase in population from 6.6 billion currently to about 8 billion by 2030 and over 9 billion by 2050. Worldwide climate change and variability are affecting water resources and agricultural production and in India Ganga Plain region is one of them. Hydroclimatic changes are very prominent in all the regions of Ganga Plain. Climate change and variability impacts are further drying the semi-arid areas and may cause serious problem of water and food scarcity for about 250 million people of the area. About 80 million ha out of total 141 million ha net cultivated area of India is rainfed, which contributes approximately 44 % of total food production has been severely affected by climate change. Further changing climatic conditions are causing prominent hydrological variations like change in drainage density, river morphology (tectonic control) & geometry, water quality and precipitation. Majority of the river channels seen today in the Ganga Plain has migrated from their historic positions. Large scale changes in land use and land cover pattern, cropping pattern, drainage pattern and over exploitation of water resources are modifying the hydrological cycle in Ganga basin. The frequency of floods and drought and its intensity has increased manifold. Ganga Plain rivers has changed their course with time and the regional hydrological conditions shows full control over the rates and processes by which environments geomorphically evolve. Approximately 47 % of total irrigated area of the country is located in Ganga Plain, which is severely affected by changing climatic conditions. In long run climate change will affect the quantity and quality of the crops and the crop yield is going to be down. This will increase the already high food inflation in the country. The warmer atmospheric temperatures and drought conditions will increase soil salinization, desertification and drying-up of aquifer, while flooding conditions will escalate soil erosion, soil degradation and sedimentation. The aim of this study is to understand the impact of different hydrological changes due to climatic conditions and come up with easily and economically feasible solutions effective in addressing the problem of water and food scarcity in future.  相似文献   

19.
Agricultural adaptation of climate change in China.   总被引:1,自引:0,他引:1  
This paper presents the study on agriculture adaptation to climate change by adopting the assumed land use change strategy to resist the water shortage and to build the capacity to adapt the expected climate change in the northern China. The cost-benefit analysis result shows that assumed land use change from high water consuming rice cultivation to other crops is very effective. Over 7 billions m3 of water can be saved. Potential conflicts between different social interest groups, different regions, demand and supply, and present and future interests have been analyzed for to form a policy to implement the adaptation strategy. Trade, usually taken as one of adaptation strategies, was suggested as a policy option for to support land use change, which not only meets the consumption demand, but also, in terms of resources, imports water resources.  相似文献   

20.
黑龙江省气候变化对粮食生产的影响   总被引:21,自引:0,他引:21  
收集1986~2000年黑龙江省79个县市农业生产资料和30个气象台站逐日气温、降水资料,应用柯布-道格拉斯生产函数方法将粮食产量分解为气候产量和经济产量,然后用EOF方法分析了粮食产量、气候影响程度指数、≥10℃积温、生长季降水的时空变化特征及其关系。结果表明:15年间全省粮食产量稳步增加,气候变暖趋势明显但降水变化不显著,变暖对粮食生产有利,降水的变化未对粮食产量产生实质影响。15年间气候影响程度总体增大,但气候变化及其影响具有时空差异性:1986~1993年北部和西南部积温增加明显,粮食产量增加大于东北部和东南部;1993~2000年东北部和东南部积温增加明显,粮食产量增加超过北部和西南部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号