首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential impacts of climate change on the phenology and yield of two maize varieties in Greece were studied. Three sites representing the central and northern agricultural regions were selected: Karditsa, Naoussa and Xanthi. The CERES-Maize model, embedded in the Decision Support System for Agrotechnology Transfer (DSSAT 3.0), was used for the crop simulations, with current and possible future management practices. Equilibrium doubled CO2 climate change scenarios were derived from the GISS, GFDL, and UKMO general circulation models (GCMs); a transient scenario was developed from the GISS GCM transient run A. These scenarios predict consistent increases in air temperature, small increases in solar radiation and precipitation changes that vary considerably over the study regions in Greece. Physiological effects of CO2 on crop growth and yield were simulated. Under present management practices, the climate change scenarios generally resulted in decreases in maize yield due to reduced duration of the growing period at all sites. Adaptation analyses showed that mitigation of climate change effects may be achieved through earlier sowing dates and the use of new maize varieties. Varieties with higher kernel-filling rates, currently restricted to the central regions, could be extended to the northern regions of Greece. In the central regions, new maize varieties with longer grain-filling periods might be needed.  相似文献   

2.
Climate change associated global warming, rise in carbon dioxide concentration and uncertainties in precipitation has profound implications on Indian agriculture. Maize (Zea mays L.), the third most important cereal crop in India, has a major role to play in country’s food security. Thus, it is important to analyze the consequence of climate change on maize productivity in major maize producing regions in India and elucidate potential adaptive strategy to minimize the adverse effects. Calibrated and validated InfoCrop-MAIZE model was used for analyzing the impacts of increase in temperature, carbon dioxide (CO2) and change in rainfall apart from HadCM3 A2a scenario for 2020, 2050 and 2080. The main insights from the analysis are threefold. First, maize yields in monsoon are projected to be adversely affected due to rise in atmospheric temperature; but increased rainfall can partly offset those loses. During winter, maize grain yield is projected to reduced with increase in temperature in two of the regions (Mid Indo-Gangetic Plains or MIGP, and Southern Plateau or SP), but in the Upper Indo-Gangetic Plain (UIGP), where relatively low temperatures prevail during winter, yield increased up to a 2.7°C rise in temperature. Variation in rainfall may not have a major impact on winter yields, as the crop is already well irrigated. Secondly, the spatio-temporal variations in projected changes in temperature and rainfall are likely to lead to differential impacts in the different regions. In particular, monsoon yield is reduced most in SP (up to 35%), winter yield is reduced most in MIGP (up to 55%), while UIGP yields are relatively unaffected. Third, developing new cultivars with growth pattern in changed climate scenarios similar to that of current varieties in present conditions could be an advantageous adaptation strategy for minimizing the vulnerability of maize production in India.  相似文献   

3.
Development and evaluation of mitigation strategies are fundamental to manage climate change risks. This study was built on (1) quantifying the response of maize (Zea mays L.) grain yield to potential impacts of climate change and (2) investigating the effectiveness of changing sowing date of maize as a mitigation option for Khorasan Province which is located in northeast of Iran. Two types of General Circulation Models (GCM: (United Kingdom Met Office Hadley Center :HadCM3) and (Institute Pierre Simon Laplace: IPCM4)) and three scenarios (A1B, A2 and B1) at four locations (Mashhad, Birjand, Bojnourd and Sabzevar) employed in this study. Long Ashton Research Station-Weather Generator (LARS-WG) was employed for generating the future climate. The Cropping System Model (CSM)-CERES-Maize was used for crop growth simulation under projected climate conditions. The results showed the simulated grain yields of maize gradually would decrease (from −1% to −39%) during future 100 years compared to baseline under different scenarios and two GCM at all study locations. The simulation results suggested that delayed sowing date from May to June at all study locations, except Sabzevar location is the most effective mitigation option for avoiding thermal stress at end of growth period. In addition, shifting in sowing date to March or April will be beneficial in terms of obtaining higher yields in Sabzevar. Grain yield did not show special trend from north to south of Khorasan Province in the future climate. In general, change of sowing date may be quite beneficial to mitigate climate change impacts on grain yield of maize in northeast of Iran.  相似文献   

4.
This paper refines the spatial resolution and spillover effects of a micro-econometric analysis of adaptation of agricultural portfolios to climate change using the Global Positioning System (GPS). From the household surveys collected across South America by the World Bank, the GPS recordings of exact farm locations such as latitude, longitude, and altitude are matched with high resolution grid cell climate data from the Climate Research Unit as well as geographically referenced soils and geography data from the Food and Agriculture Organization. The choice of agricultural systems at the farm level is estimated using spatial Logit model and the conditional land value is estimated for each system of agriculture after correcting for selection bias and spatial spillovers. Future choices and land values are simulated using the fine resolution climate scenarios by the UKMO (United Kingdom Meteorological Office) and GISS (Goddard Institute for Space Studies). This paper finds that, under the UKMO HadGEM1 (Hadley Center Global Environmental Model 1) scenario by around 2060, the choices of the specialized systems are expected to fall, but the mixed system would increase. The land value of the crops-only falls by 29 %, but the mixed system land value falls only by 12 %. Under a milder GISS ER (ModelE-R) scenario, the land value of the mixed system increases by 6 %. With full adaptations of agricultural systems, the expected land value falls by 17 %. Without adaptations, the damage increases. This paper demonstrates that adaptation behaviors can be best studied by a fine resolution micro-econometric analysis of agricultural portfolios using the GPS reference.  相似文献   

5.
This study involves the assessment of the potential impacts of greenhouse gas climate change and changing ambient carbon dioxide (CO2) levels on crop yields in Quebec, Canada. The methodology involves coupling the transient diagnostics of two Atmosphere-Ocean General Circulation Models, namely the Canadian CGCM1 and the British HadCM3, to the Decision Support System for Agrotechnology Transfer (DSSAT) 3.5 crop models to simulate current (1961–1990) and future (2040–2069) crop yields and changes. This is done for four different crop species, namely spring wheat, maize, soybean, and potato, and for seven agricultural regions of Southern Quebec. The results of this study focus on the main causative factors influencing crop yields, namely the direct CO2 fertilization effect, the influence of the increase in growing season temperature, including optimal thermal conditions and acceleration in crop maturation, soil moisture availability, as influenced by precipitation and evapotranspiration, and nitrogen uptake by crops. Our results show that crop yield changes may vary according to climate scenario, crop species, and agricultural region. Consistent with other similar research, it would seem that these multiple causative factors very often seem to cancel each other out and dilute the impacts of climate change on crop yields.  相似文献   

6.
分析1960—2008年北京山区和平原的春玉米、平原夏玉米不同生育期的热量、水、光等农业气候资源的变化趋势和突变特征,研究农业气候资源变化对玉米可能产生的影响。利用统计回归分析方法研究不同种植模式玉米在关键生育期内主要农业气候资源历史时间序列特征,同时以突变理论中的Mann-Kendall方法和Pettitt方法分析主要气候资源的趋势变化特征并检测其突变特征;在数据分析的基础上,结合国内和国际相关研究成果讨论北京市气候资源变化对玉米生长的可能性影响并给出相应对策。结果显示:近50 a来北京地区大于10℃的年活动积温和玉米全生育期有效积温呈现明显增长趋势,变化过程中无明显的突变特征;玉米播种—拔节期降水量呈增加的趋势,平原夏玉米在拔节—抽雄期和全生育期、平原春玉米在吐丝—成熟期降水量减少趋势均达显著水平,其它生育期间降水呈现不明显的下降趋势,但无明显突变点;除了抽雄—吐丝期外,玉米各生育期光照资源呈现明显的下降趋势,不同生育期的突变点均出现在20世纪80年代中期到90年代中期。北京地区农业气候资源变化趋势对玉米生产有利有弊:对积温增长的响应应以灌浆期延长为主要方式,对降水减少的响应应以种植抗旱品种和加大抗旱技术研究为主,对光照资源显著减少的对策应以调节田间通风透光和培育耐阴性品种为主。  相似文献   

7.
气候变化对鲁西北平原冬小麦产量的影响及对策   总被引:1,自引:0,他引:1  
气候变化会导致气候资源发生改变,从而引发粮食安全问题.耦合区域气候模式和作物生长模型,可定量分析气候变化导致的作物产量变动,探讨适宜的田间管理应对措施.研究以冬小麦作为研究对象,以我国粮食主产区之一的鲁西北平原作为研究区域,耦合MIROC-RegCM3区域气候模式和CERES-Wheat作物生长模型,开展A1B温室气体排放情景下,气候变化对冬小麦产量的影响及适应措施研究.结果表明,A1B气候情景下,该区域冬小麦潜在产量会有所下降;在现有管理措施的基础上,可通过培育对春化作用依赖较小的品种、 适当提早播期、 增加越冬水灌溉量等方式保证产量,减少年际间变异.该文研究结果可为应对未来气候变暖、 确保粮食安全提供参考.  相似文献   

8.
Climate change, involving changes in mean climate and climatic variability, is expected to severely affect agriculture and there is a need to assess its impact in order to define the appropriate adaptation strategies to cope with. In this paper, we projected a scenario of European agriculture in a +2°C (above pre-industrial levels) world in order to assess the potential effect of climatic change and variability and to test the effectiveness of different adaptation options. For this purpose, the outputs of HadCM3 General Circulation Model (GCM) were empirically downscaled for current climate (1975–2005) and a future period (2030–2060), to feed a process-based crop simulation model, in order to quantify the impact of a changing climate on agriculture emphasising the impact due to changes in the frequency of extreme events (heat waves and drought). The same climatic dataset was used to compare the effectiveness of different adaptations to a warmer climate strategies including advanced or delayed sowing time, shorter or longer cycle cultivar and irrigation. The results indicated that both changes in mean climate and climate variability affected crop growth resulting in different crop fitting capacity to cope with climate change. This capacity mainly depended on the crop type and the geographical area across Europe. A +2°C scenario had a higher impact on crops cultivated over the Mediterranean basin than on those cultivated in central and northern Europe as a consequence of drier and hotter conditions. In contrast, crops cultivated in Northern Europe generally exhibited higher than current yields, as a consequence of wetter conditions, and temperatures closer to the optimum growing conditions. Simple, no-cost adaptation options such as advancement of sowing dates or the use of longer cycle varieties may be implemented to tackle the expected yield loss in southern Europe as well as to exploit possible advantages in northern regions.  相似文献   

9.
Climate change is projected to intensify drought and heat stress in groundnut (Arachis hypogaea L.) crop in rainfed regions. This will require developing high yielding groundnut cultivars that are both drought and heat tolerant. The crop growth simulation model for groundnut (CROPGRO-Groundnut model) was used to quantify the potential benefits of incorporating drought and heat tolerance and yield-enhancing traits into the commonly grown cultivar types at two sites each in India (Anantapur and Junagadh) and West Africa (Samanko, Mali and Sadore, Niger). Increasing crop maturity by 10 % increased yields up to 14 % at Anantapur, 19 % at Samanko and sustained the yields at Sadore. However at Junagadh, the current maturity of the cultivar holds well under future climate. Increasing yield potential of the crop by increasing leaf photosynthesis rate, partitioning to pods and seed-filling duration each by 10 % increased pod yield by 9 to 14 % over the baseline yields across the four sites. Under current climates of Anantapur, Junagadh and Sadore, the yield gains were larger by incorporating drought tolerance than heat tolerance. Under climate change the yield gains from incorporating both drought and heat tolerance increased to 13 % at Anantapur, 12 % at Junagadh and 31 % at Sadore. At the Samanko site, the yield gains from drought or heat tolerance were negligible. It is concluded that different combination of traits will be needed to increase and sustain the productivity of groundnut under climate change at the target sites and the CROPGRO-Groundnut model can be used for evaluating such traits.  相似文献   

10.
Rice (Oryza) is a staple food in China, and rice yield is inherently sensitive to climate change. It is of great regional and global importance to understand how and to what degree climate change will impact rice yields and to determine the adaptation options effectiveness for mitigating possible adverse impacts or for taking advantage of beneficial changes. The objectives of this study are to assess the climate change impact, the carbon dioxide (CO2) fertilization effect, and the adaptation strategy effectiveness on rice yields during future periods (2011–2099) under the newly released Representative Concentration Pathway (RCP) 4.5 scenario in the Sichuan Basin, one of the most important rice production areas of China. For this purpose, the Crop Estimation through Resource and Environment Synthesis (CERES)-Rice model was applied to conduct simulation, based on high-quality meteorological, soil and agricultural experimental data. The modeling results indicated a continuing rice reduction in the future periods. Compared to that without incorporating of increased CO2 concentration, a CO2 fertilization effect could mitigate but still not totally offset the negative climate change impacts on rice yields. Three adaptive measures, including advancing planting dates, switching to current high temperature tolerant varieties, and breeding new varieties, could effectively offset the negative climate change impacts with various degrees. Our results will not only contribute to inform regional future agricultural adaptation decisions in the Sichuan Basin but also gain insight into the mechanism of regional rice yield response to global climate change and the effectiveness of widely practiced global thereby assisting with appropriate adaptive strategies.  相似文献   

11.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

12.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

13.
Climate change, population growth and socio-structural changes will make meeting future food demands extremely challenging. As wheat is a globally traded food commodity central to the food security of many nations, this paper uses it as an example to explore the impact of climate change on global food supply and quantify the resulting greenhouse gas emissions. Published data on projected wheat production is used to analyse how global production can be increased to match projected demand. The results show that the largest projected wheat demand increases are in areas most likely to suffer severe climate change impacts, but that global demand could be met if northern hemisphere producers exploit climate change benefits to increase production and narrow their yield gaps. Life cycle assessment of different climate change scenarios shows that in the case of one of the most important wheat producers (the UK) it may be possible to improve yields with an increase of only 0.6% in the emission intensity per unit of wheat produced in a 2 °C scenario. However, UK production would need to rise substantially, increasing total UK wheat production emissions by 26%. This demonstrates how national emission inventories and associated targets do not incentivise minimisation of global greenhouse gas emissions while meeting increased food demands, highlighting a triad of challenges: meeting the rising demand for food, adapting to climate change and reducing emissions.  相似文献   

14.
The North China Plain (NCP) is one of the most important regions for food production in China, with its agricultural system being significantly affected by the undergoing climate change and vulnerable with water stress. In this study, the Vegetation Interface Processes (VIP) model is used to evaluate crop yield, water consumption (ET), and water use efficiency (WUE) of a winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) double cropping system in the NCP from 1951 to 2006. Their responses to future climate scenarios of 21st century projected by the GCM (HadCM3) with Intergovernmental Panel on Climate Change Special Report on Emission Scenario (IPCC SRES) A2 and B1 emissions are investigated. The results show a rapid enhancement of crop yield in the past 56 years, accompanying with slight increment of ET and noticeable improvement of WUE. There exist spatial patterns of crop yield stemmed mainly from soil quality and irrigation facilities. For climate change impacts, it is found that winter wheat yield will significantly increase with the maximum increment in A2 occurring in 2070s with a value of 19%, whereas the maximum in B1 being 13% in 2060s. Its ET is slightly intensified, which is less than 6%, under both A2 and B1 scenarios, giving rise to the improvement of WUE by 10% and 7% under A2 and B1 scenarios, respectively. Comparatively, summer maize yield will gently decline by 15% for A2 and 12% for B1 scenario, respectively. Its ET is obviously increasing since 2050s with over 10% relative change, leading to a lower WUE with more than 25% relative change under both scenarios in 2090s. Therefore, possible adaptation countermeasures should be developed to mitigate the negative effects of climate change for the sustainable development of agro-ecosystems in the NCP.  相似文献   

15.
Future climate change directly impacts crop agriculture by altering temperature and precipitation regimes, crop yields, crop enterprise net returns, and net farm income. Most previous studies assess the potential impacts of agricultural adaptation to climate change on crop yields. This study attempts to evaluate the potential impacts of crop producers’ adaptation to future climate change on crop yield, crop enterprise net returns, and net farm income in Flathead Valley, Montana, USA. Crop enterprises refer to the combinations of inputs (e.g., land, labor, and capital) and field operations used to produce a crop. Two crop enterprise adaptations are evaluated: flexible scheduling of field operations; and crop irrigation. All crop yields are simulated using the Environmental Policy Integrated Climate (EPIC) model. Net farm income is assessed for small and large representative farms and two soils in the study area. Results show that average crop yields in the future period (2006–2050) without adaptation are between 7% and 48% lower than in the historical period (1960–2005). Flexible scheduling of the operations used in crop enterprises does not appear to be an economically efficient form of crop enterprise adaptation because it does not improve crop yields and crop enterprise net returns in the future period. With irrigation, crop yields are generally higher for all crop enterprises and crop enterprise net returns increase for the canola and alfalfa enterprises but decrease for all other assessed crop enterprises relative to no adaptation. Overall, average crop enterprise net return in the future period is 45% lower with than without irrigation. Net farm income decreases for both the large and small representative farms with both flexible scheduling and irrigation. Results indicate that flexible scheduling and irrigation adaptation are unlikely to reduce the potential adverse economic impacts of climate change on crop producers in Montana’s Flathead Valley.  相似文献   

16.
气候变暖对东北三省春玉米布局的可能影响及其应对策略   总被引:6,自引:0,他引:6  
玉米是我国重要的粮食作物之一,东北三省春播玉米区是我国第一大玉米产区,在气候变暖背景下研究气候变化对东北春玉米生产的影响及其应对策略,对我国粮食安全具有重大意义。论文以东北三省为研究区域,利用71个气象台站1961—2010年和未来气候情景RCP 4.5下2021—2040年逐日温度数据,分析了气候变化情景下东北三省热量资源和春玉米种植熟性的时空变化特征,探索性地研究了东北春玉米应对气候变暖应采取的对策。研究结果表明:未来2个年代际,东北三省日平均气温稳定通过10 ℃初日提前、10 ℃终日和初霜日推迟,稳定通过10 ℃日数和积温呈增加趋势,其中三江平原地区变化幅度最大,10 ℃初日将提前约8 d,初霜日推迟约10 d,10 ℃日数和积温分别增加约15 d和300 ℃·d;不同熟性春玉米种植北界在未来 2个年代际的北移东扩速度较过去50 a更快,尤其是中晚熟春玉米可种植区北界到2030年代将北移至49°32′N、东扩至我国东部边境135°E;为应对气候变暖,在不改变耕作制度和更换更晚熟春玉米品种的前提下,预计到2030年代,东北的松嫩平原春玉米播种期可提前或推迟16~20 d,部分地区可超过20 d;三江平原和辽河平原区可提前或推迟8~12 d;南部沿海地区播种期变化范围较小,在8 d以内;同时,亦可通过种植区北移东扩以充分利用气候变暖带来的热量资源,预计到2030年代,东北三省晚熟、中晚熟和中熟春玉米的种植北界将在现有基础上分别北移2°13′N、1°08′N和近3°N。  相似文献   

17.
Nowadays, adaptation has become a key focus of the scientific and policy-making communities and is a major area of discussion in the multilateral climate change process. As climate change is projected to hit the poorest the hardest, it is especially important for developing countries to pay particular attention to the management of natural resources and agricultural activities. In most of these countries such as Cameroon, forest can play important role in achieving broader climate change adaptation goals. However, forest generally receives very little attention in national development programme and strategies such as policy dialogues on climate change and poverty reduction strategies. Using a qualitative approach to data collection through content analysis of relevant Cameroon policy documents, the integration of climate change adaptation was explored and the level of attention given to forests for adaptation analysed. Results indicate that, with the exception of the First National Communication to UNFCCC that focused mostly on mitigation and related issues, current policy documents in Cameroon are void of tangible reference to climate change, and hence failing in drawing the relevance of forest in sheltering populations from the many projected impacts of climate change. Policies related to forest rely on a generalized concept of sustainable forest management and do not identify the specific changes that need to be incorporated into management strategies and policies towards achieving adaptation. The strategies and recommendations made in those documents only serve to improve understanding of Cameroon natural resources and add resilience to the natural systems in coping with anthropogenic stresses. The paper draws attention to the need to address the constraints of lack of awareness and poor flow of information on the potentials of forests for climate change adaptation. It highlights the need for integrating forest for adaptation into national development programmes and strategies, and recommends a review of the existing environmental legislations and their implications on poverty reduction strategy and adaptation to climate change.  相似文献   

18.
Climate change presents additional challenges to a diverse country like Cameroon that shares the Congo Basin rainforest. Not only is the population vulnerable to the direct effects of climate change, forest-dependent communities are also vulnerable to changing environmental policy that may affect their access to forest resources. Using a qualitative approach to data collection through semi-structured interviews and content analysis of relevant documents, the perception of decision-makers within, and the response of the institutions of the state, the private sector and civil society to the complex challenges of climate change in the Congo Basin forest of Cameroon were analysed. Results indicate that while decision-makers’ awareness of climate change is high, a concrete institutional response is at a very early stage. Cameroon has low adaptive capacity that is further constrained by weak linkages among government institutions nationally and between different levels of government and with communities. Civil society institutions play a role in enhancing government capacity to respond, particularly in relation to new international policies on climate change and forests. Adaptive capacity would be further enhanced by facilitating institutional linkages and coordinating multilevel responses across all boundaries of government, private sector and civil society. A collaborative capacity builder could foster the transfer, receipt and integration of knowledge across the networks, and ultimately build long-term collaborative problem-solving capacity in Cameroon.  相似文献   

19.
气候变化对中国黄淮海农业区小麦生产影响模拟研究   总被引:21,自引:0,他引:21  
研究首先利用1980-2000年黄淮海农业区10个站点的农业数据对CER ES-W heat动态机理作物模型进行详细的验证,然后将CERESW-heat模型与两个全球气候模式(G ISS和H adley)结合,同时考虑到CO2对小麦的直接施肥作用,模拟了黄淮海农业区10个站点在IPCC SR ES A 2和B2两个气候情景下雨养和灌溉小麦产量和水分利用的变化趋势。得到如下结论:在不考虑CO2直接肥效的情况下,黄淮海农业区雨养小麦全面减产,空间分布特点是西部减产幅度大,东部减产幅度小;在充分灌溉的情况下,灌溉小麦产量维持了现有水平,但灌溉水量增加。因此,在未来该地区水资源短缺的情况下,如何合理利用有限的水资源将成为黄淮海农业区主要面临的问题。在考虑CO2直接肥效的情况下,雨养和灌溉小麦产量都全面增产,雨养小麦的增产幅度明显偏高,灌溉小麦约增产10%~30%,但CO 2的肥效能否充分实现还需要进一步研究证明。  相似文献   

20.
The impacts of climate change are expected to be generally detrimental for agriculture in many parts of Africa. Overall, warming and drying may reduce crop yields by 10–20% to 2050, but there are places where losses are likely to be much more severe. Increasing frequencies of heat stress, drought and flooding events will result in yet further deleterious effects on crop and livestock productivity. There will be places in the coming decades where the livelihood strategies of rural people may need to change, to preserve food security and provide income-generating options. These are likely to include areas of Africa that are already marginal for crop production; as these become increasingly marginal, then livestock may provide an alternative to cropping. We carried out some analysis to identify areas in sub-Saharan Africa where such transitions might occur. For the currently cropped areas (which already include the highland areas where cropping intensity may increase in the future), we estimated probabilities of failed seasons for current climate conditions, and compared these with estimates obtained for future climate conditions in 2050, using downscaled climate model output for a higher and a lower greenhouse-gas emission scenario. Transition zones can be identified where the increased probabilities of failed seasons may induce shifts from cropping to increased dependence on livestock. These zones are characterised in terms of existing agricultural system, current livestock densities, and levels of poverty. The analysis provides further evidence that climate change impacts in the marginal cropping lands may be severe, where poverty rates are already high. Results also suggest that those likely to be more affected are already more poor, on average. We discuss the implications of these results in a research-for-development targeting context that is likely to see the poor disproportionately and negatively affected by climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号