首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
We show the implications of the commonly observed age-related decline in aboveground productivity of forests, and hence forest age structure, on the carbon dynamics of European forests in response to historical changes in environmental conditions. Size-dependent carbon allocation in trees to counteract increasing hydraulic resistance with tree height has been hypothesized to be responsible for this decline. Incorporated into a global terrestrial biosphere model (the Lund-Potsdam-Jena model, LPJ), this hypothesis improves the simulated increase in biomass with stand age. Application of the advanced model, including a generic representation of forest management in even-aged stands, for 77 European provinces shows that model-based estimates of biomass development with age compare favorably with inventory-based estimates for different tree species. Model estimates of biomass densities on province and country levels, and trends in growth increment along an annual mean temperature gradient are in broad agreement with inventory data. However, the level of agreement between modeled and inventory-based estimates varies markedly between countries and provinces. The model is able to reproduce the present-day age structure of forests and the ratio of biomass removals to increment on a European scale based on observed changes in climate, atmospheric CO2 concentration, forest area, and wood demand between 1948 and 2000. Vegetation in European forests is modeled to sequester carbon at a rate of 100 Tg C/yr, which corresponds well to forest inventory-based estimates.  相似文献   

2.
After presenting a short review of process-based model requirements to capture the plant dynamic response to defoliation, this paper describes the development and testing of a model of crown damage and defoliation for Eucalyptus. A model that calculates light interception and photosynthetic production for canopies that vary spatially and temporally in leaf area and photosynthetic properties is linked to the forest growth model CABALA. The process of photosynthetic up-regulation following defoliation is modelled with a simple conditional switch that triggers up-regulation when foliar damage or removal causes the ratio of functional leaf area to living tissue in the tree to change.We show that the model predicts satisfactorily when validated with trees of Eucalyptus nitens and Eucalyptus globulus from a range of sites of different ages, subject to different types of stress and different types of defoliation events (R2 = 0.96 across a range of sites). However, the complexity of particular situations can cause the model to fail (e.g. very heavy defoliation events where branch death occurs).It is concluded that while the model will not cope with all situations, an appropriate level of generality has been captured to represent many of the physiological processes and feedbacks that occur following defoliation or leaf damage. This makes the model useful for guiding management interventions following pest attack and allows the development of scenarios including climate change impact analyses and decision-making on the merits of post-defoliation fertilisation to expedite recovery.  相似文献   

3.
以南亚热带中幼龄针阔混交林为研究对象,通过典型样地调查法,对森林生态系统各个层次进行取样调查,采用12个样地实测数据和已有生物量模型相结合的方法计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-水合加热法。在此基础上,分析了中幼龄针阔混交林碳储量及其分配格局。结果表明,主要造林树种树根、树杆、树枝和树叶碳含量均值分别为45.07%、46.73%、46.30%和47.72%。植物碳含量表现为乔木〉灌木〉草本。乔木碳储量占植被总碳储量比例介于63.38%-94.08%之间,灌木碳储量所占比例介于3.55%-12.67%之间,而草本碳储量仅介于为1.28%-23.95%之间,不同林龄段乔木和灌木碳储量均值随林龄的增加呈上升趋势,而草本碳储量呈下降趋势。土壤碳储量介于106.73-136.61 t·hm^-2之间,土壤碳储量随林龄的增加呈现出先降低后升高的趋势。针阔混交林总碳储量介于134.79-162.60 t·hm^-2之间,分配格局表现为土壤层〉植被层〉凋落物层。土壤层碳储量所占总碳储量比例范围为78.34%-94.45%,植被层所占比例介于4.84%-20.16%之间,凋落物层仅介于0.71%-1.50%之间,中幼龄针阔混交林碳储量主要以土壤固碳为主。研究结果为树种选择、人工林生态系统固碳潜力以及人工碳汇林的经营管理等研究提供科学参考。  相似文献   

4.
Restoration of abandoned and degraded ecosystems through enhanced management of mature remnant patches and naturally regenerating (regrowth) forests is currently being used in the recovery of ecosystems for biodiversity protection and carbon sequestration. Knowledge of long-term dynamics of these ecosystems is often very limited. Vegetation models that examine long-term forest growth and succession of uneven aged, mixed-species forest ecosystems are integral to the planning and assessment of the recovery process of biodiversity values and biomass accumulation. This paper examined the use of the Ecosystem Dynamics Simulator (EDS) in projecting growth dynamics of mature remnant brigalow forest communities and recovery process of regrowth brigalow thickets. We used data from 188 long-term monitored plots of remnant and regrowth forests measured between 1963 and 2010. In this study the model was parameterised for 34 tree and shrub species and tested with independent long-term measurements. The model closely approximated actual development trajectories of mature forests and regrowth thickets but some inaccuracies in estimating regeneration through asexual reproduction and mortality were noted as reflected in stem density projections of remnant plots that had a mean of absolute relative bias of 46.2 (±12.4)%. Changes in species composition in remnant forests were projected with a 10% error. Basal area values observed in all remnant plots ranged from 6 to 29 m2 ha−1 and EDS projections between 1966 and 2005 (39 years) were 68.2 (±10.9)% of the observed basal area. Projected live aboveground biomass of remnant plots had a mean of 93.5 (±5.9) t ha−1 compared to a mean of 91.3 (±8.0) t ha−1 observed in the plots. In regrowth thicket, the model produced satisfactory projections of tree density (91%), basal area (89%), height (87%) and aboveground biomass (84%) compared to the observed attributes. Basal area and biomass accumulation in 45-year-old regrowth plots was approximately similar to that in remnant forests but recovery of woody understorey was very slow. The model projected that it would take 95 years for the regrowth to thin down to similar densities observed in original or remnant brigalow forests. These results indicated that EDS can produce relatively accurate projections of growth dynamics of brigalow regrowth forests necessary for informing restoration planning and projecting biomass accumulation.  相似文献   

5.
One of the key problems confronting ecological forecasting is the validation of computer models. Here we report successful validation of a forest dynamics model Ecosystem Dynamics Simulator (EDS), adapted from the JABOWA-II forest succession model. This model and many variants derived from it have successfully simulated growth dynamics of uneven-aged mixed forests under changing environment with a moderate amount of input data. But rarely are adequate time-series data available for quantitative model validation. This study tested the performance of EDS in projecting the tree density, tree diameter at breast height (dbh), tree height, basal area and aboveground biomass of uneven-aged, mixed species sclerophyll forests in St. Mary state forests of eastern Australia. The test data were collected between 1951 and 2005. Every tree was uniquely numbered, tagged and measured in consecutive re-measurements. Projected growth attributes were compared with those observed in an independent validation dataset. The model produced satisfactory projections of tree density (91.7%), dbh (92.3%), total tree height (82.8%), basal area (89.3%) and aboveground biomass (87.6%) compared to the observed attributes. These results suggest that the EDS model can provide reasonable capability in projecting growth dynamics of uneven-aged, mixed species sclerophyll forests.  相似文献   

6.
Donaldson JR  Lindroth RL 《Ecology》2007,88(3):729-739
Optimal defense theories suggest that a trade-off between defense costs and benefits maintains genetic variation within plant populations. This study assessed the independent and interactive effects of genetic- and environment-based variation in aspen leaf chemistry on insect performance, preference, and defoliation. Gypsy moth larvae were released into screenhouses containing eight aspen genotypes growing with high and low levels of nutrient availability. Plant chemistry, defoliation, and larval growth rates varied in response to genotype, nutrient availability, and their interaction. Total phenolic glycoside concentrations were inversely correlated with patterns of larval preference and were the best predictor of larval performance and defoliation among genotypes. Low-nutrient trees were less heavily defoliated and afforded decreased larval growth rates compared with high-nutrient trees. Nutrient availability mediated the defense benefits of phenolic glycosides, as plant chemistry explained significantly less variation in defoliation in low- compared with high-nutrient trees (7% vs. 44% of variation explained). These results suggest that spatial and temporal variation in resource availability may influence the relative magnitude of defense benefits in plants. Environmental mediation of the defense costs and benefits likely leads to diversifying selection and may maintain genetic polymorphisms in chemical defense traits in plant populations.  相似文献   

7.
The forest tent caterpillar (Malacosoma disstria Hübner) (FTC) has an outbreak cycle of approximately 10 years; however, smaller spatial scale analyses show some regions have longer or more frequent periods of high defoliation. This may be a result of local forest fragmentation, pollution or other sources of stress that may affect FTC directly or indirectly through stress on their hosts or parasitoids. Population dynamics of FTC were examined to investigate how stress may alter the severity and frequency of defoliation. We developed a spatially explicit agent-based model to simulate the host-parasitoid dynamics of FTC. Theoretical and empirically derived parameters were established using past literature and over 50 years of population data of FTC from Ontario, Canada. We find that increasing FTC fecundity, FTC dispersal or parasitoid mortality resulted in more severe outbreaks while a decrease in parasitoid fecundity or searching efficiency resulted in an overall elevation of defoliation. Parasitoid efficiency was the most effective parameter for altering the FTC defoliation. Since plant stress has been shown to alter several of these parameters in nature due to changes in food quality, habitat suitability, and chemical cue interference, our results suggest that forests affected by stressors such as climate change and pollution will have more severe and frequent defoliation from these insects than surrounding unaffected forests. As stressors such as drought and pollution emissions are predicted to increase in frequency or intensity over the next few decades, understanding how they may affect the outbreak cycle of a forest defoliator can aid in planning strategies to reduce the detrimental effects of this insect.  相似文献   

8.
The present study aimed to evaluate the short-term biomass accumulation of forest trees exposed to wet acidic depositions. A hierarchical Bayesian model of tree growth was developed based on the data of a short-term experiment in which 2-year-old Japanese red pine (Pinus densiflora Sieb. et Zucc.) seedlings were exposed to aqueous phase OH radicals generated by an iron-oxalate-H2O2 mist (a pseudo-polluted dew) over two growing periods. We conducted a statistical comparison of tree growth between the control and pollution treatment groups by using the growth model incorporated the random effects due to the unknown characteristics of each seedling. The variability among seedlings is expressed in this model by the posterior probabilistic distributions of unobserved dry weight of a stem cohort before exposure treatment. The analysis of the effects of pollution treatment on the stem growth revealed that this treatment decreases the biomass allocation in the current year stems. However, the effects on the relative growth rate of pre-existing stems were unclear. Based on these results, we can speculate that in a polluted environment, the short-term growth of the young stems in the seedlings inhibited by pollution treatment, thereby resulting in the slowdown of long-term biomass accumulation. This can explain the patterns observed in the declining Japanese red pine forests that are subjected to OH-generating dews in the polluted area of western Japan.  相似文献   

9.
A simulation study was carried out to investigate simultaneously the effects of eco-physiological parameters on competitive asymmetry, self-thinning, stand biomass and NPP in a temperate forest using an atmosphere–vegetation dynamics interactive model (MINoSGI). In this study, we selected three eco-physiological relevant parameters as foliage profiles (i.e. vertical distribution of leaf area density) of individual trees (distribution pattern is described by the parameter η), biomass allocation pattern in individual tree growth (χ) and the maximum carboxylation velocity (Vmax). The position of the maximal leaf area density shifts upward in the canopy with increasing η. For scenarios with η < 4 (foliage concentrated in the lowest canopy layer) or η > 12 (foliage concentrated in the uppermost canopy layer), a low degree of competitive asymmetry was produced. These scenarios resulted in the survival of subordinate trees due to a brighter lower canopy environment when η < 4 or the generation of spatially separated foliage profiles between dominant and subordinate trees when η > 12. In contrast, competition between trees was most asymmetric when 4 ≤ η ≤ 12 (vertically widespread foliage profile in the canopy), especially when η = 8. In such cases, vertically widespread foliage of dominant trees lowered the opportunity of light acquisition for subordinate trees and reduced their carbon gain. The resulting reduction in carbon gain of subordinate trees yielded a higher degree of competitive asymmetry and ultimately higher mortality of subordinate trees. It was also shown that 4 ≤ η ≤ 12 generated higher self-thinning speed, smaller accumulated NPP, litter-fall and potential stand biomass as compared with the scenarios with η < 4 or η > 12. In contrast, our simulation revealed small effects of χ or Vmax on the above-mentioned variables as compared with those of η. In particular, it is notable that greater Vmax would not produce greater potential stand biomass and accumulated NPP although it has been thought that physiological parameters relevant to photosynthesis such as Vmax influence dynamic changes in forest stand biomass and NPP (e.g. the greater the Vmax, the greater the NPP). Overall, it is suggested that foliage profiles rather than biomass allocation or maximum carboxylation velocity greatly govern forest dynamics, stand biomass, NPP and litter-fall.  相似文献   

10.
Temperature influences carbon accumulation in moist tropical forests   总被引:2,自引:0,他引:2  
Evergreen broad-leaved tropical forests can have high rates of productivity and large accumulations of carbon in plant biomass and soils. They can therefore play an important role in the global carbon cycle, influencing atmospheric CO2 concentrations if climate warms. We applied meta-analyses to published data to evaluate the apparent effects of temperature on carbon fluxes and storages in mature, moist tropical evergreen forest ecosystems. Among forests, litter production, tree growth, and belowground carbon allocation all increased significantly with site mean annual temperature (MAT); total net primary productivity (NPP) increased by an estimated 0.2-0.7 Mg C x ha(-1) x yr(-1) x degrees C(-1). Temperature had no discernible effect on the turnover rate of aboveground forest biomass, which averaged 0.014 yr(-1) among sites. Consistent with these findings, forest biomass increased with site MAT at a rate of 5-13 Mg C x ha(-1) x degrees C(-1). Despite greater productivity in warmer forests, soil organic matter accumulations decreased with site MAT, with a slope of -8 Mg C x ha(-1) x degrees C(-1), indicating that decomposition rates of soil organic matter increased with MAT faster than did rates of NPP. Turnover rates of surface litter also increased with temperature among forests. We found no detectable effect of temperature on total carbon storage among moist-tropical evergreen forests, but rather a shift in ecosystem structure, from low-biomass forests with relatively large accumulations of detritus in cooler sites, to large-biomass forests with relatively smaller detrital stocks in warmer locations. These results imply that, in a warmer climate, conservation of forest biomass will be critical to the maintenance of carbon stocks in moist tropical forests.  相似文献   

11.
Poorter L  Kitajima K 《Ecology》2007,88(4):1000-1011
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.  相似文献   

12.
《Ecological modelling》2005,188(1):76-92
Mechanistic theories of plant competition developed to explain changes in community structure and dynamics along resource availability gradients have been mostly applied to temperate forests and grasslands where light and nutrients are the two main limiting resources. In contrast, the mechanisms underlying the structure and dynamics of water-limited plant communities have been little explored. Also previous mechanistic models rely either on complex simulators, which are difficult to interpret or on simple conceptual models, which ignore too many critical details. In this study, we develop a model of stand dynamics for light and water-limited forests of intermediate complexity and we provide an analytical framework for its analyses. The model is an individual-based simulator that describes the feedback between transpiration, stomatal function and soil water dynamics with asymmetrical competition for light and water. Trees allocate carbon to three main compartments: shoot, stem and roots. We use the model to explore general patterns that may emerge across levels of biological organization from the leaf to the stand. Model predictions are consistent with a number of features of Mediterranean forests structure and dynamics. At the plant-level the leaf-based tradeoff between carbon gain and water loss expresses as a tradeoff between mortality and growth. This tradeoff explains plant morphological changes in above-ground biomass and root to shoot allocation along a water availability gradient. At the community-level, tradeoffs among carbon acquisition and water loss govern the sign of plant interactions along the gradient. Coexistence among morphological types was not observed for the range of parameters and environmental conditions explored. Overall the model provides an unifying explanation for the observed changes in the sign of plant to plant interactions along environmental gradients as well as a process-based formulation that can be linked to empirical studies.  相似文献   

13.
Plant biomass partitioning is an important driver of whole-plant net carbon gain, as biomass allocation could directly affect plant's future growth and reproduction. Alpine meadow in the northwestern Sichuan was impressed by the abundant community structure and species diversity. This study on biomass allocation pattern of different functional types and lifeforms might help understand plant life-history strategy of alpine meadow plants. We investigated 72 dominant herbaceous species for their compartments, biomass, and morphological traits during 2012-2014. These plants were sampled from natural grassland, disturbed grassland, and wintergreen grassland; they belonged to three functional types (grass, sedge, and forb) and two lifeforms (annual and perennial). The scaling relationships between functional traits of these plants were analyzed using Model type II regression method to estimate the parameters of the allometric equations. (1) Biomass allocation proportion of components significantly differed among grasses, sedges, and forbs owing to phylogeny: grasses had the highest stem biomass percentage, sedges had higher root biomass percentage, and forbs had higher leaf biomass percentage, but the scaling relationships were not significantly different, and isometric scaling was noted between biomass components for the three functional types. (2) Moreover, plant lifeforms affected the biomass allocation proportion of components, owing to the shorter or longer turnover rate and investment strategy between annual and perennial species. Annuals allocated more biomass to the stem and reproduction organs, but perennials invested more biomass to the leaves and roots. (3) In addition, plants from different grassland types differed in both biomass and morphology traits. Moreover, forbs from natural grassland and wintergreen grassland had higher leaf and reproductive biomass, but those from disturbed grasslands had higher stem biomass. Our results suggest that the functional type and lifeform decide the inherent scaling relationships between components of plants, but anthropogenic disturbance significantly impacted the quantity of component biomass. This study has important theoretical and practical significance to understand the response of alpine plants to climate change and anthropogenic disturbance as well as to help in the scientific management of alpine meadow. © 2018 Science Press. All rights reserved.  相似文献   

14.
This work analysed the carbon sequestration potential in two species of mangroves (Rhizophora mucronata and Avicennia marina) along with their growth, biomass, sediment characteristics for four seasons of the year 2009–2010, in planted stands of different age (1–17.5 years) in the Vellar-Coleroon estuarine complex, India. The mangroves were recorded to store significant amount of biomass. Avicennia marina performed better to display 75 % higher rate of carbon sequestration than that in Rhizophora mucronata. This could be attributed to growth efficiency and high biomass production. For instance, Avicennia marina exhibited 2.7 fold higher girth, 24 % higher net canopy photosynthesis, 2 fold aboveground biomass (AGB), 40 % more belowground biomass (BGB) and 77.3 % higher total biomass, than R. mucronata did. Seasonally the rate of carbon sequestration was 7.3 fold higher in post-monsoon, 3.4 fold in monsoon, 73 % more in summer than that in pre-monsoon. The rate of carbon sequestration was positively correlated with age of planted site, tree height, tree diameter, net canopy photosynthesis, AGB, BGB, total biomass, carbon stock, growth efficiency, AGB/tree height tree girth, leaf area index, silt content (p?<?0.01). The carbon sequestration was negatively corrected with soil temperature and clay content (p?<?0.05). Mangroves were found to be a productive system and important sink of carbon in the tropical coastal zone, but increasing soil temperature due to global warming would have a negative impact on carbon sequestration potential of the mangroves.  相似文献   

15.
Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding deforestation and promoting regeneration after disturbance should receive high priority as policy considerations. Policies to encourage programs or projects that influence forest carbon sequestration and offset fossil fuel emissions should also consider major items such as leakage, the cyclical nature of forest growth and regrowth, and the extensive demand for and movement of forest products globally, and other greenhouse gas effects, such as methane and nitrous oxide emissions, and recognize other environmental benefits of forests, such as biodiversity, nutrient management, and watershed protection. Activities that contribute to helping forests adapt to the effects of climate change, and which also complement forest carbon storage strategies, would be prudent.  相似文献   

16.
Litter decomposition is a key component in ecosystem material cycling that determines (i) forest soil carbon (C) and nutrient content, (ii) release of carbon dioxide to the atmosphere, and (iii) generation and mass transfer of dissolved organic carbon from terrestrial to aquatic ecosystems. In this study, we provide simulations of long term forest-floor litter dynamics generated with both (i) an existing forest nutrient cycling and biomass growth model (ForNBM) with a single-pool formulation of forest-floor litter decomposition (Zhu et al., 2003. Ecol. Model. 169, 347-360), and (ii) a revised version of the model produced by substituting the single-pool formulation with a three-pool version of the formulation tested against data from litterbag experiments (FLDM; Zhang et al., 2010. Ecol. Model. 221, 1944-1953). This is done to determine the importance of subdividing the litter mass into categories of rates of decay (i.e., fast, slow, and very slow) on model accuracy. Forest-forest litter dynamics simulated with the two models are subsequently compared against field measurements collected at several northern jack pine (Pinus banksiana) stands along a southwest-northeast oriented transect (climate gradient) associated with the Boreal Forest Transect Case Study in northwest Canada. Initial comparison shows that the single-pool formulation underpredicts residual litter mass when forests are <65 years old, largely due to the improper treatment of the very slow decomposing litter component. This underprediction is resolved when the three-pool formulation is used. From a ecosystems-response point of view, the revised ForNBM (with the three-pool formulation) demonstrates that (i) forest-floor litter initially increases with forest growth and reaches a plateau once the forest matures; (ii) the forest floor stores more litter and C at the southern and warmer sites than at the northern sites; and (iii) in a similar climate regime, the forest floor stores more litter and C at productive than at nutrient-poor sites.  相似文献   

17.
The seasonal growth rates and nitrogen and carbon fluxes were estimated for two subtidalMacrocystis integrifolia Bory kelp forests in British Columbia, Canada from changes in population structure through time. Mean relative growth rates of the forests varied from a high of 4.3% d-1 to a low of-3.6% d-1. Mean net assimilatioon rates of carbon (a photosynthesis analog) varied from a high of 0.66 g C m-2 of foliage d-1 to a low of-0.87 g C m-2 d-1. The leaf area index ranged from 0.3 to 11.9. Annual carbon input on a foliage area basis was calculated at 250 g C m-2 yr-1. Annual carbon input to the forest was estimated at 1 300 g C m-2 of ocean bottom yr-1. The yearly nitrate nitrogen input to the forest was estimated at 60 g N m-2 of ocean bottom yr-1. The net ecosystem production varied from-520 to +31 g C m-2 of ocean bottom yr-1. The intra-forest, inter-forest and seasonal variabilities of these productivity parameters are discussed.  相似文献   

18.
林伟  郑博福  胡理乐  郭建明 《生态环境》2011,20(12):1831-1835
建立林木生物量模型是估算森林生物量的重要方法之一,叶面积指数(Leaf Area Index,简称LAI)和材积与林木密切相关,是否可通过建立森林生物量与LAI或材积的相关模型来估算森林生物量,进而估算森林碳储量,值得探索。以井冈山自然保护区两种典型森林类型(常绿阔叶林和人工杉木林)为研究对象,分乔木层、植被层和总体(植被层+土壤层)3部分分别计算碳密度,并对它们与叶面积指数LAI和材积之间的相关性进行分析。结果表明:常绿阔叶林总体碳密度为38.915kg/m^2,高于人工杉木林的27.460kg/m^2;两种森林类型乔木层和植被层碳密度与材积具有很好的相关性(R^2〉0.97),在与LAI的相关性分析中,人工杉木林乔木层和植被层碳密度与LAI相关系数达到0.7以上,相关关系显著,而常绿阔叶林各层碳密度与LAI的相关性不明显;在森林总体碳密度与LAI和材积的相关性分析中发现,只有常绿阔叶林总体碳密度与材积的R^2为0.7116,达到显著水平,其它相关性水平均不显著。因此,利用材积与生物量和碳储量的相关关系来推算井冈山森林生物量和碳储量的方法是可行的,通过叶面积指数来推算森林生物量和碳储量的方法还有待进一步研究探讨。  相似文献   

19.
20.
Atmospheric nitrogen (N) deposition can increase forest growth. Because N deposition commonly increases foliar N concentrations, it is thought that this increase in forest growth is a consequence of enhanced leaf-level photosynthesis. However, tests of this mechanism have been infrequent, and increases in photosynthesis have not been consistently observed in mature forests subject to chronic N deposition. In four mature northern hardwood forests in the north-central United States, chronic N additions (30 kg N ha(-1) yr(-1) as NaNO3 for 14 years) have increased aboveground growth but have not affected canopy leaf biomass or leaf area index. In order to understand the mechanism behind the increases in growth, we hypothesized that the NO3(-) additions increased foliar N concentrations and leaf-level photosynthesis in the dominant species in these forests (sugar maple, Acer saccharum). The NO3(-) additions significantly increased foliar N. However, there was no significant difference between the ambient and +NO3(-) treatments in two seasons (2006-2007) of instantaneous measurements of photosynthesis from either canopy towers or excised branches. In measurements on excised branches, photosynthetic nitrogen use efficiency (micromol CO2 s(-1) g(-1) N) was significantly decreased (-13%) by NO3(-) additions. Furthermore, we found no consistent NO3(-) effect across all sites in either current foliage or leaf litter collected annually throughout the study (1993-2007) and analyzed for delta 13C and delta 18O, isotopes that can be used together to integrate changes in photosynthesis over time. We observed a small but significant NO3(-) effect on the average area and mass of individual leaves from the excised branches, but these differences varied by site and were countered by changes in leaf number. These photosynthesis and leaf area data together suggest that NO3(-) additions have not stimulated photosynthesis. There is no evidence that nutrient deficiencies have developed at these sites, so unlike other studies of photosynthesis in N-saturated forests, we cannot attribute the lack of a stimulation of photosynthesis to nutrient limitations. Rather than increases in C assimilation, the observed increases in aboveground growth at our study sites are more likely due to shifts in C allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号