首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Fire regimes result from reciprocal interactions between vegetation and fire that may be further affected by other disturbances, including climate, landform, and terrain. In this paper, we describe fire and fuel extensions for the forest landscape simulation model, LANDIS-II, that allow dynamic interactions among fire, vegetation, climate, and landscape structure, and incorporate realistic fire characteristics (shapes, distributions, and effects) that can vary within and between fire events. We demonstrate the capabilities of the new extensions using two case study examples with very different ecosystem characteristics: a boreal forest system from central Labrador, Canada, and a mixed conifer system from the Sierra Nevada Mountains (California, USA). In Labrador, comparison between the more complex dynamic fire extension and a classic fire simulator based on a simple fire size distribution showed little difference in terms of mean fire rotation and potential severity, but cumulative burn patterns created by the dynamic fire extension were more heterogeneous due to feedback between fuel types and fire behavior. Simulations in the Sierra Nevada indicated that burn patterns were responsive to topographic features, fuel types, and an extreme weather scenario, although the magnitude of responses depended on elevation. In both study areas, simulated fire size and resulting fire rotation intervals were moderately sensitive to parameters controlling the curvilinear response between fire spread and weather, as well as to the assumptions underlying the correlation between weather conditions and fire duration. Potential fire severity was more variable within the Sierra Nevada landscape and also was more sensitive to the correlation between weather conditions and fire duration. The fire modeling approach described here should be applicable to questions related to climate change and disturbance interactions, particularly within locations characterized by steep topography, where temporally or spatially dynamic vegetation significantly influences spread rates, where fire severity is variable, and where multiple disturbance types of varying severities are common.  相似文献   

2.
Climate change models for California's Sierra Nevada predict greater inter-annual variability in precipitation over the next 50 years. These increases in precipitation variability coupled with increases in nitrogen deposition from fossil fuel consumption are likely to result in increased productivity levels and significant increases in forest understory fuel loads. Higher understory plant biomass contributes to fuel connectivity and may increase future fire size and severity in the Sierra Nevada. The objective of this research was to develop and test a model to determine how changing precipitation and nitrogen deposition levels affect shrub and herb biomass production, and to determine how often prescribed fire would be needed to counter increasing fuel loads. Model outputs indicate that under an increasing precipitation scenario significant increases in shrub and herb biomass occur that can be counteracted by decreasing the fire return interval to 10 years. Under a scenario with greater inter-annual variability in precipitation and increased nitrogen deposition, implementing fire treatments at an interval equivalent to the historical range of 15–30 years maintains understory vegetation fuel loads at levels comparable to the control.  相似文献   

3.
Caribou are an integral component of high-latitude ecosystems and represent a major subsistence food source for many northern people. The availability and quality of winter habitat is critical to sustain these caribou populations. Caribou commonly use older spruce woodlands with adequate terrestrial lichen, a preferred winter forage, in the understory. Changes in climate and fire regime pose a significant threat to the long-term sustainability of this important winter habitat. Computer simulations performed with a spatially explicit vegetation succession model (ALFRESCO) indicate that changes in the frequency and extent of fire in interior Alaska may substantially impact the abundance and quality of winter habitat for caribou. We modeled four different fire scenarios and tracked the frequency, extent, and spatial distribution of the simulated fires and associated changes to vegetation composition and distribution. Our results suggest that shorter fire frequencies (i.e., less time between recurring fires) on the winter range of the Nelchina caribou herd in eastern interior Alaska will result in large decreases of available winter habitat, relative to that currently available, in both the short and long term. A 30% shortening of the fire frequency resulted in a 3.5-fold increase in the area burned annually and an associated 41% decrease in the amount of spruce-lichen forest found on the landscape. More importantly, simulations with more frequent fires produced a relatively immature forest age structure, compared to that which currently exists, with few stands older than 100 years. This age structure is at the lower limits of stand age classes preferred by caribou from the Nelchina herd. Projected changes in fire regime due to climate warming and/or additional prescribed burning could substantially alter the winter habitat of caribou in interior Alaska and lead to changes in winter range use and/or population dynamics.  相似文献   

4.
5.
In the western United States, forest ecosystems are subject to a variety of forcing mechanisms that drive dynamics, including climate change, land-use/land-cover change, atmospheric pollution, and disturbance. To understand the impacts of these stressors, it is crucial to develop assessments of forest properties to establish baselines, determine the extent of changes, and provide information to ecosystem modeling activities. Here we report on spatial patterns of characteristics of forest ecosystems in the western United States, including area, stand age, forest type, and carbon stocks, and comparisons of these patterns with those from satellite imagery and simulation models. The USDA Forest Service collected ground-based measurements of tree and plot information in recent decades as part of nationwide forest inventories. Using these measurements together with a methodology for estimating carbon stocks for each tree measured, we mapped county-level patterns across the western United States. Because forest ecosystem properties are often significantly different between hardwood and softwood species, we describe patterns of each. The stand age distribution peaked at 60-100 years across the region, with hardwoods typically younger than softwoods. Forest carbon density was highest along the coast region of northern California, Oregon, and Washington and lowest in the arid regions of the Southwest and along the edge of the Great Plains. These results quantify the spatial variability of forest characteristics important for understanding large-scale ecosystem processes and their controlling mechanisms. To illustrate other uses of the inventory-derived forest characteristics, we compared them against examples of independently derived estimates. Forest cover compared well with satellite-derived values when only productive stands were included in the inventory estimates. Forest types derived from satellite observations were similar to our inventory results, though the inventory database suggested more heterogeneity. Carbon stocks from the Century model were in good agreement with inventory results except in the Pacific Northwest and part of the Sierra Nevada, where it appears that harvesting and fire in the 20th century (processes not included in the model runs) reduced measured stand ages and carbon stocks compared to simulations.  相似文献   

6.
《Ecological modelling》2007,200(1-2):45-58
Effective forest ecosystem-based management requires a thorough understanding of the interactions between anthropogenic and natural disturbance processes over larger spatial and temporal scales than stands and rotation ages. Because harvesting does not preclude fire, it is important to evaluate the combined effects of harvesting and fire on forest age structure, a coarse indicator of forest ecosystem state. We performed a sensitivity analysis of landscape scale effects of forest management (strategy, harvest rate and access cost) and fire regime (fire return interval and extent) in terms of combined impacts on forest stand age-class structure on a study area of 3.5 million hectares of boreal forest of Québec. A series of scenarios were simulated over 500 years and replicated 30 times using a previously reported spatially explicit landscape model. Within the parameter space of our sensitivity analysis, we found that harvest rate, fire return interval and management strategy were the most significant parameters affecting stand age-class distribution across the landscape. The former are not so surprising, given that they combine to produce an overall disturbance rate, but the latter shows that the resulting impact on age-class structure can be influenced to some degree through management objectives. A harvesting strategy of clearcutting for sustained timber supply, using a harvest rotation based on minimum merchantable age (approximately 100 years in this analysis), creates a trend for the stand age-class distribution away from the expected range of natural variation for the study area. Within the scope of our simulations, alternative management strategies with extended harvest rotation age proved the most robust forest management practice to absorb variations in fire regime.  相似文献   

7.
The HFire fire regime model was used to simulate the natural fire regime (prior to European settlement) on Kennedy Space Center, Merritt Island National Wildlife Refuge, Canaveral National Seashore, and Cape Canaveral Air Force Station, Florida. Model simulations were run for 500 years and the model was parameterized using information generated from previously published empirical studies on these properties (e.g., lightning fire ignition frequencies and ignition seasonality). A mosaic pattern of frequent small fires dominated this fire regime with rare but extremely large fires occurring during dry La Niña periods. This simulated fire size distribution very closely matched the previously published fire size distribution for lightning ignitions on these properties. A sensitivity analysis was performed to establish which parameters were most influential and the range of variation surrounding empirically parameterized model output. Dead fuel moisture and wind speed had the largest influence on model outcome. A wide range of variance was observed surrounding the composite simulation with the least being 6% in total burn frequency and the greatest being 49% in total area burned. Because simulation modeling is the best option for fire regime reconstruction in many rapidly growing shrub dominated systems, these results will be of interest to scientists and fire managers for delineating the natural fire regime on these properties, the southeastern United States and other fire adapted shrub systems worldwide.  相似文献   

8.
Longleaf pine (Pinus palustris) savannas of the southeastern U.S. represent an archetype of a fire dependent ecosystem. They are known to have very short fire return intervals (∼1-3 years) that perpetuate understory plant diversity (up to 50 species m−2), support pine recruitment, and suppress fire sensitive hardwoods. Understanding the relationships that regulate longleaf and southern hardwoods is especially critical. With decreased fire frequency, insufficient intensity, or lack of underground competition, a woody mid-story rapidly develops, dominated by fire sensitive trees and shrubs that in-turn suppress more fire dependent species (including pine seedlings). This may occur in forest gaps, where pine-needle abundance is diminished, reducing fire spread potential. The interactions between longleaf pine, hardwoods, forest fuels, and fire frequency are complex and difficult to understand spatially. The objective of this study was to develop a spatially explicit longleaf pine-hardwood stochastic simulation model (LLM), incorporating tree demography, plant competition, and fuel and fire characteristics. Data from two longleaf pine study sites were used to develop and evaluate the model with the goal to incorporate simple site-specific calibration parameters for model versatility. Specific model components included pine seed masting, hardwood clonal sprouting, response to fire (re-sprouting, mortality), and tree density driven competition effects. LLM spatial outputs were consistent with observed forest gap dynamics associated with pine seedling establishment and hardwood encroachment. Changes in fire frequency (i.e., fire probability = 0.35-0.05) illustrated a shift in community structure from longleaf pine dominated to a hardwood dominated community. This approach to assessing model response may be useful in characterizing longleaf ecosystem resilience, especially at intermediate fire frequencies (e.g., 0.15) where the community may be sensitive to small changes in the fire regime. Height distributions and population densities were similar to in situ findings (field and LIDAR data) for both study sites. Height distributions output by the LLM illustrated fluctuations in population structure. The LLM was especially useful in determining knowledge gaps associated with fuel and fire heterogeneity, plant-plant interactions, population structure and its temporal fluctuations, and hardwood demography. This is the first known modeling work to simulate interactions between longleaf pine and hardwoods and provides a foundation for further studies on fire and forest management, especially in relation to ecological forestry practices, restoration, and site-specific applications.  相似文献   

9.
Abstract: The ability of reserves to maintain natural ecosystem processes such as fire disturbance regimes is central to long-term conservation. Fire-scarred tree samples were used to reconstruct fire regimes at five study sites totaling approximately 230 ha in pine (   Pinus spp.) and oak ( Quercus spp.) forests of La Michilía Biosphere Reserve on the dry east slope of the Sierra Madre Occidental, Durango, Mexico. Study sites covered a 20-km environmental gradient of elevation, topography, and human land uses. Plant communities ranged from oak-pine to mixed conifer forests. Fires were frequent at all sites prior to 1930, when large-scale grazing of domestic livestock was initiated. Widespread fires have been excluded from four of the five sites since 1945, with an essentially uninterrupted regime of frequent fires continuing only in the reserve core. Xeric sites had many, smaller fires, whereas mesic sites had fewer but larger fires. On a reserve-wide scale, a fire burned on at least one site nearly every year, usually in the dry spring or early summer season, but fire years were rarely synchronous among the sites. Fire occurrence was weakly related to the Southern Oscillation climate pattern; major reserve-wide fire years almost never coincided with wet Southern Oscillation extremes but only occasionally matched dry extremes. Maintenance of the long-term frequent-fire regime in the reserve core is one indicator that the biosphere reserve model has been successful in conserving natural processes, but the protected area is small ( 7000 ha). Because of the key role of frequent-fire regimes in regulating ecosystem structure and function, restoration of the ecological role of fire disturbance is a desirable conservation strategy.  相似文献   

10.
Staver AC  Archibald S  Levin S 《Ecology》2011,92(5):1063-1072
Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. We present (a) a spatially extensive analysis of tree cover and fire distribution in sub-Saharan Africa, and (b) a model, based on empirical results, demonstrating that savanna and forest may be alternative stable states in parts of Africa, with implications for understanding savanna distributions. Tree cover does not increase continuously with rainfall, but rather is constrained to low (<50%, "savanna") or high tree cover (>75%, "forest"). Intermediate tree cover rarely occurs. Fire, which prevents trees from establishing, differentiates high and low tree cover, especially in areas with rainfall between 1000 mm and 2000 mm. Fire is less important at low rainfall (<1000 mm), where rainfall limits tree cover, and at high rainfall (>2000 mm), where fire is rare. This pattern suggests that complex interactions between climate and disturbance produce emergent alternative states in tree cover. The relationship between tree cover and fire was incorporated into a dynamic model including grass, savanna tree saplings, and savanna trees. Only recruitment from sapling to adult tree varied depending on the amount of grass in the system. Based on our empirical analysis and previous work, fires spread only at tree cover of 40% or less, producing a sigmoidal fire probability distribution as a function of grass cover and therefore a sigmoidal sapling to tree recruitment function. This model demonstrates that, given relatively conservative and empirically supported assumptions about the establishment of trees in savannas, alternative stable states for the same set of environmental conditions (i.e., model parameters) are possible via a fire feedback mechanism. Integrating alternative stable state dynamics into models of biome distributions could improve our ability to predict changes in biome distributions and in carbon storage under climate and global change scenarios.  相似文献   

11.
Constraints on global fire activity vary across a resource gradient   总被引:4,自引:0,他引:4  
Krawchuk MA  Moritz MA 《Ecology》2011,92(1):121-132
We provide an empirical, global test of the varying constraints hypothesis, which predicts systematic heterogeneity in the relative importance of biomass resources to burn and atmospheric conditions suitable to burning (weather/climate) across a spatial gradient of long-term resource availability. Analyses were based on relationships between monthly global wildfire activity, soil moisture, and mid-tropospheric circulation data from 2001 to 2007, synthesized across a gradient of long-term averages in resources (net primary productivity), annual temperature, and terrestrial biome. We demonstrate support for the varying constraints hypothesis, showing that, while key biophysical factors must coincide for wildfires to occur, the relative influence of resources to burn and moisture/weather conditions on fire activity shows predictable spatial patterns. In areas where resources are always available for burning during the fire season, such as subtropical/tropical biomes with mid-high annual long-term net primary productivity, fuel moisture conditions exert their strongest constraint on fire activity. In areas where resources are more limiting or variable, such as deserts, xeric shrublands, or grasslands/savannas, fuel moisture has a diminished constraint on wildfire, and metrics indicating availability of burnable fuels produced during the antecedent wet growing seasons reflect a more pronounced constraint on wildfire. This macro-scaled evidence for spatially varying constraints provides a synthesis with studies performed at local and regional scales, enhances our understanding of fire as a global process, and indicates how sensitivity to future changes in temperature and precipitation may differ across the world.  相似文献   

12.
The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.  相似文献   

13.
In western North American conifer forests, wildfires are increasing in frequency and severity due to heavy fuel loads that have accumulated after a century of fire suppression. Forest restoration treatments (e.g., thinning and/or burning) are being designed and implemented at large spatial and temporal scales in an effort to reduce fire risk and restore forest structure and function. In ponderosa pine (Pinus ponderosa) forests, predominantly open forest structure and a frequent, low-severity fire regime constituted the evolutionary environment for wildlife that persisted for thousands of years. Small mammals are important in forest ecosystems as prey and in affecting primary production and decomposition. During 2006-2009, we trapped eight species of small mammals at 294 sites in northern Arizona and used occupancy modeling to determine community responses to thinning and habitat features. The most important covariates in predicting small mammal occupancy were understory vegetation cover, large snags, and treatment. Our analysis identified two generalist species found at relatively high occupancy rates across all sites, four open-forest species that responded positively to treatment, and two dense-forest species that responded negatively to treatment unless specific habitat features were retained. Our results indicate that all eight small mammal species can benefit from restoration treatments, particularly if aspects of their evolutionary environment (e.g., large trees, snags, woody debris) are restored. The occupancy modeling approach we used resulted in precise species-level estimates of occupancy in response to habitat attributes for a greater number of small mammal species than in other comparable studies. We recommend our approach for other studies faced with high variability and broad spatial and temporal scales in assessing impacts of treatments or habitat alteration on wildlife species. Moreover, since forest planning efforts are increasingly focusing on progressively larger treatment implementation, better and more efficiently obtained ecological information is needed to inform these efforts.  相似文献   

14.
Weak climatic control of stand-scale fire history during the late holocene   总被引:1,自引:0,他引:1  
Gavin DG  Hu FS  Lertzman K  Corbett P 《Ecology》2006,87(7):1722-1732
Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.  相似文献   

15.
Hamann A  Wang T 《Ecology》2006,87(11):2773-2786
A new ecosystem-based climate envelope modeling approach was applied to assess potential climate change impacts on forest communities and tree species. Four orthogonal canonical discriminant functions were used to describe the realized climate space for British Columbia's ecosystems and to model portions of the realized niche space for tree species under current and predicted future climates. This conceptually simple model is capable of predicting species ranges at high spatial resolutions far beyond the study area, including outlying populations and southern range limits for many species. We analyzed how the realized climate space of current ecosystems changes in extent, elevation, and spatial distribution under climate change scenarios and evaluated the implications for potential tree species habitat. Tree species with their northern range limit in British Columbia gain potential habitat at a pace of at least 100 km per decade, common hardwoods appear to be generally unaffected by climate change, and some of the most important conifer species in British Columbia are expected to lose a large portion of their suitable habitat. The extent of spatial redistribution of realized climate space for ecosystems is considerable, with currently important sub-boreal and montane climate regions rapidly disappearing. Local predictions of changes to tree species frequencies were generated as a basis for systematic surveys of biological response to climate change.  相似文献   

16.
Thaxton JM  Platt WJ 《Ecology》2006,87(5):1331-1337
Small-scale variation in fire intensity and effects may be an important source of environmental heterogeneity in frequently burned plant communities. We hypothesized that variation in fire intensity resulting from local differences in fuel loads produces heterogeneity in pine savanna ground cover by altering shrub abundance. To test this hypothesis, we experimentally manipulated prefire fuel loads to mimic naturally occurring fuel-load heterogeneity associated with branch falls, needle fall near large pines, and animal disturbances in a frequently burned longleaf pine (Pinus palustris) savanna in Louisiana, USA. We applied one of four fuel treatments (unaltered control, fine-fuel removal, fine-fuel addition, wood addition) to each of 540 (1-m2) quadrats prior to growing-season prescribed fires in each of two years (1999 and 2001). In both years fuel addition increased (and fuel removal decreased) fuel consumption and maximum fire temperatures relative to unaltered controls. Fuel addition, particularly wood, increased damage to shrubs, increased shrub mortality, and decreased resprout density relative to controls. We propose that local variation in fire intensity may contribute to maintenance of high species diversity in pine savannas by reducing shrub abundance and creating openings in an otherwise continuous ground cover.  相似文献   

17.
Crown fire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (CFD) and can be used to model fire in heterogeneous crown fuels. However, the potential impacts of variability in crown fuels on fire behavior have not yet been explored. In this study we describe a new model, FUEL3D, which incorporates the pipe model theory (PMT) and a simple 3D recursive branching approach to model the distribution of fuel within individual tree crowns. FUEL3D uses forest inventory data as inputs, and stochastically retains geometric variability observed in field data. We investigate the effects of crown fuel heterogeneity on fire behavior with a CFD fire model by simulating fire under a homogeneous tree crown and a heterogeneous tree crown modeled with FUEL3D, using two different levels of surface fire intensity. Model output is used to estimate the probability of tree mortality, linking fire behavior and fire effects at the scale of an individual tree. We discovered that variability within a tree crown altered the timing, magnitude and dynamics of how fire burned through the crown; effects varied with surface fire intensity. In the lower surface fire intensity case, the heterogeneous tree crown barely ignited and would likely survive, while the homogeneous tree had nearly 80% fuel consumption and an order of magnitude difference in total net radiative heat transfer. In the higher surface fire intensity case, both cases burned readily. Differences for the homogeneous tree between the two surface fire intensity cases were minimal but were dramatic for the heterogeneous tree. These results suggest that heterogeneity within the crown causes more conditional, threshold-like interactions with fire. We conclude with discussion of implications for fire behavior modeling and fire ecology.  相似文献   

18.
We report the development of a new spatially explicit individual-based Dynamic Global Vegetation Model (SEIB–DGVM), the first DGVM that can simulate the local interactions among individual trees within a spatially explicit virtual forest. In the model, a sample plot is placed at each grid box, and then the growth, competition, and decay of each individual tree within each plot is calculated by considering the environmental conditions for that tree as it relates to the trees that surround it. Based on these parameters only, the model simulated time lags between climate change and vegetation change. This time lags elongated when original biome was forest, because existing trees prevent newly establish trees from receiving enough sunlight and space to quickly replace the original vegetation. This time lags also elongated when horizontal heterogeneity of sunlight distribution was ignored, indicating the potential importance of horizontal heterogeneity for predicting transitional behavior of vegetation under changing climate. On a local scale, the model reproduced climate zone-specific patterns of succession, carbon dynamics, and water flux, although on a global scale, simulations were not always in agreement with observations. Because the SEIB–DGVM was formulated to the scale at which field biologists work, the measurements of relevant parameters and data comparisons are relatively straightforward, and the model should enable more robust modeling of terrestrial ecosystems.  相似文献   

19.
《Ecological modelling》2004,180(1):41-56
Landscape simulation models are widely used to study the behavior of ecological systems. As computing power has increased, these models have become more complex and incorporated more realistic spatial representations of landscape patterns and ecological processes. The goal of this research was to examine the sensitivity of simulated landscape patterns to fundamental spatial modeling assumptions. The LANDIS simulator was parameterized for forests of the Georgia Piedmont and used to model landscape-scale community dynamics at fire return intervals from 20 to 100 years. A base scenario incorporating localized seed dispersal along with landform-related variation in species establishment rates and disturbance regimes was contrasted with three alternative scenarios. The uniform habitat scenario applied the same set of species establishment coefficients across all landforms. The uniform dispersal scenario removed the effects of seed source abundance and pattern on species establishment. The uniform disturbance scenario assumed identical disturbance regimes on all landforms.At the shortest fire return intervals, fire severities were low and the stand age distribution was dominated by older forests. At longer fire return intervals, fire severities were high and the stand age distribution was skewed toward younger forests. Species composition generally followed a gradient from fire-resistant species at short fire return intervals to fire-sensitive species at longer fire return intervals. However, some species exhibited bimodal distributions with high abundances at both short and long fire return intervals. Landscape responses to fire were similar in the uniform habitat scenario and the base scenario. Communities were less sensitive to fire return interval and had more fire-sensitive species in the uniform dispersal scenario than in the base scenario. Species composition in the uniform disturbance scenario was similar to the base scenario for the longest fire-intervals, but was more sensitive to changes in the fire regime at shorter fire return intervals. In models of Piedmont forest landscapes, accurate spatial representations of dispersal and fire regime heterogeneity are essential for predicting landscape-scale species composition under changing fire regimes. In contrast, the precise spatial representation of species–habitat relationships may be considerably less important.  相似文献   

20.
Fire is a basic ecological factor that contributes to determine vegetation diversity and dynamics in time and space. Fuel characteristics play an essential role in fire ignition and propagation; at the landscape scale fuel availability and flammability are closely related to the vegetation phenology that directly affects wildfire pattern in time and space. In this view, the annual normalized difference vegetation index (NDVI) profiles derived from high temporal resolution satellites, like SPOT Vegetation, represent an effective tool for monitoring the coarse-scale vegetation seasonal timing. The objective of this study thus consists in quantifying the explanatory power of multitemporal NDVI profiles on the fire regime characteristics of the potential natural vegetation (PNV) types of Sardinia (Italy) over a 5-year period (2000-2004). The results obtained show a good association between the NDVI temporal dynamics of the PNV of Sardinia and the corresponding fire regime characteristics, emphasizing the role of the bioclimatic timing of the vegetation in controlling the coarse-scale wildfire spatio-temporal distribution of Sardinia. By providing a sound phytogeographical framework for describing different wildfire regimes, PNV maps can thus be considered helpful cartographic documents for fire management strategies at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号