首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 177 毫秒
1.
利用FDS模拟研究走廊中排烟口数量、位置以及挡烟垂壁与缓冲区的结合对高层建筑烟气控制效果的影响,寻找最佳组合烟气控制模式。结果表明,在走廊中部设置1个以排除火灾产生烟气为主的排烟口,在空气幕前方2m处设置1个以排除新鲜空气为主的排气口,并且在排气口后方0.5m处设置1个挡烟垂壁的组合烟气控制模式具有最佳的烟气控制效果。挡烟垂壁离机械排烟口0.5m时,可以有效降低缓冲区及前室的温度和烟气浓度,前室内CO2体积分数下降21.4%,温度下降9℃。当挡烟垂壁离空气幕较近时,走廊内的温度和烟气浓度反而上升。  相似文献   

2.
通过建立高层建筑内烟气流动的数学模型,采用k-ε双方程三维紊流模型对高层建筑火灾时横向走道内不同防排烟方式和不同位置的排烟口对烟气状态的影响进行数值模拟;通过分析比较,得出对于火灾初期挡烟垂壁对延缓烟气扩散的效果明显,可以通过设置合理的挡烟垂壁高度和数量来延长疏散时间;笔者认为,重要场所应用机械排烟时,排烟口应避免设在前室附近,应将排烟口设置在以挡烟垂壁为防烟分区的中间部位;在保持总排烟量不变和不过分增加经济投入时应增设排烟口的数量以达到最佳排烟效果。  相似文献   

3.
高层建筑火灾时,正压防烟带入的大量新鲜空气被送入着火层并稀释了烟气,降低了机械排烟效率。采用垂向组合控制的模式,对高层建筑内烟气流动采用双方程三维紊流模型,通过实验和模拟对比分析各排烟模式的排烟效果。结果表明,对条形走廊,单独设置空气幕能有效阻挡烟气进入前室,但防烟时间相对较短,同时采用空气幕和正压时,挡烟时间至少增加了60 s,且挡烟效果和单独前室正压相同,但所需新鲜空气量却减少了1/3,且此模式下的烟气在空气幕和前室正压作用下经过两次降温,温度下降效果明显,在竖井中容易形成滞止状态,使烟气在中性层上方向其他楼层扩散的趋势降低,对整栋楼内人员疏散更为有利。  相似文献   

4.
为研究长廊型高层建筑中常用烟气组合控制模式的效果,以一幢17层的长廊型高层建筑为研究对象,设计了8种烟气组合控制模式,包括设置挡烟垂壁、机械排烟口、加压送风口及防烟空气幕,并采用计算机模拟软件FDS进行模拟分析,以得到最佳防排烟设计方案。同时,进行相关实体试验来验证模拟的正确性。结果表明,有防烟空气幕的控制模式可以很好地阻挡烟气并控制烟气的扩散,且最佳烟气控制模式是在走廊段中部设置1个排烟口及挡烟垂壁,前室门前设置防烟空气幕并在前室内设置正压送风口。研究表明,这种模式不仅可以及时排除烟气,还可以形成一个较大的缓冲区域,阻止烟气进入疏散通道,保证人员安全疏散。  相似文献   

5.
建筑物走廊是火灾时人员疏散的必经之路,了解走廊烟气的运动规律,对人员疏散与救援具有重大意义。本文对走廊内的火灾烟气进行了数值模拟,得出了不同排烟场景下走廊烟气质量分数及烟气温度的分布情况。研究表明:挡烟垂壁在火灾初期能有效地阻止烟气蔓延;由于其蓄烟作用,应该将其设置在走廊中部。但随着火势的不断扩大,挡烟垂壁效果逐渐减弱,此时必须增设机械排烟机才能及时排出烟气。对比不同机械排烟场景可知,为达到更好的排烟效果,机械排烟口应该设置在挡烟垂壁上游。最后将模拟结果与实验结果对比,验证了本文结论的正确性。  相似文献   

6.
为研究适用于高层建筑火灾中烟气控制的组合控制模型,提出通过设置防烟缓冲区来改善传统前室正压送风系统,并且与其他烟气控制方式相结合建立组合模型。设计并实施狭长走廊建筑的火灾烟气全尺寸风洞试验;在试验基础上,采用Fire Dynamic Simulation(FDS)软件模拟该风洞在相同试验条件下的火灾现象,对模拟结果和全尺寸试验的数据进行比较分析,发现2者规律吻合,且平均温度误差率为4.08%,验证所建模型的合理性。研究结果还表明在与防烟缓冲区组合中,30 m内走廊段只需设置一个排烟口,且排烟口位置以靠近火源为宜,其排烟效率为72.1%;此外还需要在排烟口后增设挡烟垂壁,来加强排烟效果,从而达到组合模型的最佳烟气控制效果。  相似文献   

7.
为研究L型挡烟垂壁的最佳挡烟效果,采用FDS模拟了20种工况,对L型挡烟垂壁的两个关键参数,即挡烟垂壁的下部延伸长度和排烟口到挡烟垂壁之间的距离进行研究。在不增加排烟量的前提下,比较不同的挡烟垂壁下部延伸长度和排烟口到挡烟垂壁之间的距离的防烟效果。由各种模式下的模拟结果可知,最佳工况为工况15,即下部延伸长度为0.9 m,排烟口到挡烟垂壁之间的距离为1.5 m,在此工况下走廊在人眼特征高度处的烟气温度始终处于安全范围内。对比相同条件下的传统挡烟垂壁即工况3,工况15可以减少40%的热量进入前室。  相似文献   

8.
为研究走廊中防排烟的影响因素,采用数值模拟的方法,对排烟口布置方式、走廊净高度和排烟速率以及挡烟垂壁等因素进行分析.结果表明,排烟口的布置方式不同对排烟效果的影响很大;排烟口置于顶棚时比排烟口置于侧壁时排烟效率高,走廊内危险性低;走廊净高对烟气的沉降有非常明显的影响,走廊净高低,危险性大;高层建筑走廊机械排烟时,排烟速率对排烟效果影响很大;挡烟垂壁能够较好地降低挡烟垂壁下游走廊内的危险性.  相似文献   

9.
火灾发生时,空气幕可以在不影响人员通行情况下阻挡烟气的蔓延,适用于逃生楼梯口处.运用Pyrosim软件,对一简单建筑模型进行火灾模拟,研究空气幕距挡烟垂壁及火源不同距离时的挡烟效果差异,通过烟气蔓延情况,对空气幕处的速度矢量、空气幕后方测点处温度、CO浓度等数据进行比较分析,得出空气幕距挡烟垂壁的最优设置距离为0.5~1m;火源位置对空气幕挡烟性能的影响不大.  相似文献   

10.
通过在走廊与前室之间设置“走廊-前室缓冲区”来改善高层建筑传统前室正压送风系统.其完整设想是在前室前设置一段无烟区,通过防烟空气幕作为柔性隔断划分缓冲段和走廊段,并且在气幕前设置排烟口,排出多余的新鲜空气,从而避免影响火场机械排烟效率.利用全尺寸风洞试验台模拟高层建筑内的长廊型空间,重点考察缓冲区内空气幕倾角、射流速度及排气口排气量对缓冲区效果的影响.结果表明:0~60°范围内,空气幕倾角越大越好;在风量不超过总送风量规定下,空气幕射流速度越大越利于防烟,射流速度约为16m/s时,机械排烟效率较高;缓冲区排气口排烟量介于1708-2563m3/h时,缓冲区的设置的效果最佳.当缓冲区内各因素的值满足以上设置时,能够提供较高的排烟效率,达到72.8%.既能保证走廊内烟气的及时排出,更有利于火灾时人员的安全疏散.  相似文献   

11.
地铁站台层发生火灾时,烟气会从站台层经过楼扶梯开口蔓延至站厅层,因此, 楼扶梯开口处的挡烟效果对人员安全疏散影响重大。通过搭建全尺寸地铁站数值模拟模 型,对细水雾幕和排烟系统作用下楼扶梯开口处的挡烟效果进行了模拟研究,结果表明 :当仅设置挡烟垂壁时,挡烟垂壁有一定的蓄烟作用,但仍有大量烟气通过楼扶梯开口 从站台层蔓延至站厅层;设置细水雾幕可在一定程度上阻止烟气通过楼扶梯开口从站台 层蔓延至站厅层,有效降低烟气温度,但由于细水雾向下的冲量破坏烟气层的稳定性, 使得细水雾幕附近的烟气层高度降低;同时设置细水雾幕和排烟系统可实现良好的挡烟 效果,在楼扶梯的中段附近已基本不受火灾烟气的影响。  相似文献   

12.
为探究平行换乘车站火灾烟气扩散特性及排烟优化模式,利用1∶10地铁换乘车站模型,在公共站厅、站台、单洞单线隧道、单洞双线隧道中设计多种火灾场景,分析各区域内的顶棚温度分布情况。结果表明:公共站厅不同位置发生火灾时,各区域内的烟气蔓延特性和通风排烟效果不同;站台火灾时,打开屏蔽门能增大补风量,延缓火源上方的升温过程,降低站台内部温升,并且在联合站台及两侧隧道排烟时仅开启火源附近6个屏蔽门有利于提高排烟效率;单洞单线隧道火灾时烟气温度相对较高,单洞双线隧道火灾时,近火源区域内起火隧道和未起火隧道的烟气分布特性不同,烟气可通过打开的屏蔽门蔓延至临近站台,开启隧道排烟及站台送风后能有效减小温升幅度和烟气扩散范围。实验结果可为平行换乘车站中的火灾烟气通风控制方案提供数据支撑。  相似文献   

13.
为研究隧道火灾时空气幕与排烟系统复合模式下的烟气蔓延规律,优化选择防排烟方式,以某越江隧道为研究对象,运用FDS数值模拟方法探究射流速度、排烟量和空气幕与排烟口间距对防排烟效果的影响。结果表明:空气幕与排烟口间距对射流特性与烟气蔓延有较强影响,间距为30 m的控烟效果最佳;空气幕与机械排烟复合作用的控烟效果远优于每个独立系统,可实现可靠挡烟和有效排烟;当火源功率20 MW时,随空气幕射流速度的增加挡烟效果有所增加,但射流速度不宜过大,取20~30 m/s;机械排烟对温度与可见度影响比空气幕作用效果显著,一定程度上增加排烟量可降低所需气幕射流速度;综合考虑防排烟的有效性和经济性,取射流速度为20 m/s、排烟量为100 m3/s为最优防排烟组合方式。  相似文献   

14.
为探明水幕排烟系统对隧道内烟气控制和排烟效率的影响,通过火灾动力学求解器(FDS)研究不同排烟风量下隧道内烟气、温度和速度分布。结果表明:排烟量小于100 m3/s时,水幕无法有效地阻隔有毒烟气的蔓延;当火源热释放速率(HRR)为10、20及30 MW时,排烟量分别为100、160和180 m3/s,能将烟气限制在水幕排烟系统内;在水幕的作用下,水幕外的温度分布均满足人员逃生的需要(小于80℃),在水幕排烟系统中烟气控制要比温度控制更为重要;相同火源HRR下,排烟口的排烟效率随着排烟量先增大后减小;排烟口的吸穿效应在水幕排烟系统中很难出现,排烟口吸入位于隧道底部混有大量新鲜空气的烟气是造成排烟效率降低的主要原因。  相似文献   

15.
为了研究地铁多线换乘车站换乘通道的火灾烟气扩散规律,利用1∶10的地铁多线换乘车站火灾模型装置,在换乘通道内开展多种情景下的火灾实验,对顶棚温度、烟气扩散范围等进行分析,比较不同防烟分区通风联动模式的烟气控制效果。结果表明:自然通风条件下,通道内的烟气受到“L”型的建筑结构影响,在通道的转角附近区域发生蓄积,产生局部温升较大;综合考虑两侧站厅内的烟气温度分布情况,当靠近大站厅(站厅A+B)一端和转角处起火时,采用站厅A+B送风、站厅C排烟的联动模式具有较优的烟气控制效果;当靠近小站厅(站厅C)一端起火时,站厅A+B的通风对站厅C内的气流组织形式影响小,开启站厅C内风机进行排烟能够更好地控制烟气的扩散。实验结果可以为通道换乘式车站的烟气防排烟方案提供数据支持。  相似文献   

16.
纵向排烟与集中排烟下烟气控制效果的对比研究   总被引:1,自引:1,他引:0  
以某特长公路隧道为研究背景,采用缩尺寸试验测试、数值模拟的方法分别对纵向排烟和集中排烟模式下隧道内火灾烟气的蔓延特性进行了研究,并对比分析了两种排烟系统在火灾工况下对烟气的控制效果。结果表明,纵向排烟模式将火灾烟气控制在火源下游并从隧道出口排出,高温烟气蔓延范围较长;集中排烟模式通过排烟阀将烟气抽离行车道,有效地控制了烟气蔓延和沉降,高温烟气维持在行车道的上部空间,主要通过竖井排出隧道。采用纵向排烟模式的坡度隧道烟气控制受烟囱效应影响较大,而在设置排烟道的坡度隧道中,将排烟阀开启进行自然排烟就能有效地减弱烟囱效应。因此,采用集中排烟模式的防灾安全性能要优于采用纵向排烟模式。  相似文献   

17.
为了揭示车厢内部火灾烟气在不同防排烟方式下的迁移特征,优化选择最优防排烟方式,运用火灾动力学软件FDS对CRH2A动车组的一节车厢进行模拟计算。分别采用机械排烟系统、空气幕系统及二者复合系统对车厢内烟气进行控制,对比分析不同排烟系统下车厢内烟气温度、烟气层高度和烟气浓度的变化规律。结果表明:随着排烟量的增加排烟效果显著增大,但排烟量不宜过大,当固定功率为0.2 MW时,V2=0.87 m3/s排烟效果最佳;空气幕在一定程度上可以阻挡烟气蔓延至相邻车厢,机械排烟在降低烟气温度与浓度方面的效果比空气幕系统明显;每个独立系统的控烟效果远不及二者复合系统效果明显。综合考虑防排烟的有效性和经济性,在本文设定工况下,V1=1.12 m3/s、V2=1.62 m3/s为最优防排烟组合方式。  相似文献   

18.
针对地铁单面坡隧道连续下坡距离长、提升高度大的特点,以国内某城市地铁线路为研究对象,构建列车火灾通风排烟数值计算模型,并采用1:20模型实验对数值计算精确度进行验证,通过考虑列车起火位置、风机开启模式和隧道断面形式等因素,对火灾烟气扩散过程、疏散平台上方烟气温度和气体浓度进行分析。研究结果表明:列车起火后,单洞单线隧道2端车站应各开启2台隧道风机,单洞双线隧道除开启射流风机外,2端车站应各开启4台隧道风机执行相应的排烟和送风模式进行烟气控制;由于单洞双线隧道中热损失和空气卷吸量较大,火灾烟气温度、CO和CO2浓度均低于单洞单线隧道;采用纵向通风控制烟气逆流的同时,下风向区域的烟气沉降作用较为明显,防排烟设计中应充分考虑列车中部火灾下风向车厢区域的危险性,合理确定应急响应模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号