首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   8篇
安全科学   12篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   5篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
为研究地铁网络化运营枢纽车站火灾烟气扩散特征和防排烟技术,根据工程资料和标准规范对典型多线换乘车站进行1∶10火灾实验模型设计,并依据设计方案完成车站模型主体结构和通风排烟系统的搭建,同时在各个防烟分区设计安装温度、流速、烟气浓度和热辐射测量装置,可实现对“T”形、“十”形和“L”形换乘等不同换乘形式车站的火灾场景模拟和危险参数测量。研究结果表明:该模型装置能够开展一系列针对不同换乘形式和通风模式的火灾实验,对于全面揭示大型换乘车站火灾烟气运动规律、验证并优化火灾防排烟设计方法、支撑复杂结构枢纽车站火灾烟气控制技术具有重要意义。  相似文献   
2.
为了研究地铁乘客安全行为的影响因素,通过对北京、上海、广州、深圳等城市的地铁乘客的多项安全指标的抽样调查,建立了关于乘客安全行为的结构方程模型,研究了影响地铁乘客安全行为的主要因素。结果表明:良好的地铁安全氛围能有效提高乘客的安全知识水平、安全动机、安全心理水平、安全参与行为水平;安全参与行为水平同时受到乘客安全知识水平和乘客接受安全培训状况的影响,其中,乘客安全知识水平的高低取决于乘客接受安全培训状况;安全服从行为则与安全动机存在较强的正相关关系;乘客的安全心理水平只跟地铁安全氛围有关,安全氛围越好,乘客安全心理水平越高,安全知识作为中介变量同时影响着安全氛围与安全参与行为、安全培训与安全参与行为、安全氛围与安全动机以及安全培训与安全动机之间的关系,提高乘客安全知识水平是提高乘客安全行为水平的重要途径。  相似文献   
3.
为了研究地铁同站台高架换乘车站的设备区火灾,在某同站台高架换乘车站的设备区开展现场火灾实验,对设备区走廊顶棚烟气温度、烟气沉降作用和危险高度烟气温度变化情况进行分析。研究结果表明:设备区火灾烟气扩散过程受火源位置、外界自然风压、安全出口分布和开启情况的影响较大。安全出口均开启时,自然风下风向的烟气蓄积作用较为明显,顶棚烟气温度较高,火灾危险性较大;火灾过程中,设备区大部分走廊区域均能形成稳定的烟气分层,烟气层高度为2.4~2.8 m,自然通风条件下大部分区域烟气沉降最低高度在1.5 m以下,部分区域可降至地面高度,开启排烟风机后升高至1 m以上;设备区走廊区域起火时,在0.125 MW的火灾规模下,烟气扩散区域危险高度处的最高温度达到45℃;设备房间内起火时,在0.06 MW的火灾规模下,经过填充和沉降过程,扩散至走廊区域的烟气温度较低,危险高度处的烟气最高温度为32℃,火灾危险性较低。在含多个走廊和房间的设备区火灾防排烟设计中,应考虑起火位置和不同季节自然风对疏散路径火灾危险性的影响。  相似文献   
4.
为了研究地铁多线换乘车站换乘通道的火灾烟气扩散规律,利用1∶10的地铁多线换乘车站火灾模型装置,在换乘通道内开展多种情景下的火灾实验,对顶棚温度、烟气扩散范围等进行分析,比较不同防烟分区通风联动模式的烟气控制效果。结果表明:自然通风条件下,通道内的烟气受到“L”型的建筑结构影响,在通道的转角附近区域发生蓄积,产生局部温升较大;综合考虑两侧站厅内的烟气温度分布情况,当靠近大站厅(站厅A+B)一端和转角处起火时,采用站厅A+B送风、站厅C排烟的联动模式具有较优的烟气控制效果;当靠近小站厅(站厅C)一端起火时,站厅A+B的通风对站厅C内的气流组织形式影响小,开启站厅C内风机进行排烟能够更好地控制烟气的扩散。实验结果可以为通道换乘式车站的烟气防排烟方案提供数据支持。  相似文献   
5.
为研究地铁同站台高架换乘车站火灾烟气蔓延特性和防排烟技术,对具有该换乘形式的某实体车站进行全尺寸火灾实验方案设计,结合车站通风排烟模式和列车运行模式,对站厅层、站台层和设备区分别设计不同规模的火灾场景,同时在站内各防烟分区设计安装烟气温度测量装置和流速测试装置,实现同站台高架换乘车站不同结构空间内烟气危险性参数的实时测量。按照本文设计的实验方案在该车站开展了一系列全尺寸实验,后续的研究中将详细介绍不同火源规模、火源位置、通风方式和列车运行模式下的实验结果。  相似文献   
6.
为探究平行换乘车站火灾烟气扩散特性及排烟优化模式,利用1∶10地铁换乘车站模型,在公共站厅、站台、单洞单线隧道、单洞双线隧道中设计多种火灾场景,分析各区域内的顶棚温度分布情况。结果表明:公共站厅不同位置发生火灾时,各区域内的烟气蔓延特性和通风排烟效果不同;站台火灾时,打开屏蔽门能增大补风量,延缓火源上方的升温过程,降低站台内部温升,并且在联合站台及两侧隧道排烟时仅开启火源附近6个屏蔽门有利于提高排烟效率;单洞单线隧道火灾时烟气温度相对较高,单洞双线隧道火灾时,近火源区域内起火隧道和未起火隧道的烟气分布特性不同,烟气可通过打开的屏蔽门蔓延至临近站台,开启隧道排烟及站台送风后能有效减小温升幅度和烟气扩散范围。实验结果可为平行换乘车站中的火灾烟气通风控制方案提供数据支撑。  相似文献   
7.
针对地铁单面坡隧道连续下坡距离长、提升高度大的特点,以国内某城市地铁线路为研究对象,构建列车火灾通风排烟数值计算模型,并采用1:20模型实验对数值计算精确度进行验证,通过考虑列车起火位置、风机开启模式和隧道断面形式等因素,对火灾烟气扩散过程、疏散平台上方烟气温度和气体浓度进行分析。研究结果表明:列车起火后,单洞单线隧道2端车站应各开启2台隧道风机,单洞双线隧道除开启射流风机外,2端车站应各开启4台隧道风机执行相应的排烟和送风模式进行烟气控制;由于单洞双线隧道中热损失和空气卷吸量较大,火灾烟气温度、CO和CO2浓度均低于单洞单线隧道;采用纵向通风控制烟气逆流的同时,下风向区域的烟气沉降作用较为明显,防排烟设计中应充分考虑列车中部火灾下风向车厢区域的危险性,合理确定应急响应模式。  相似文献   
8.
为了研究地铁同站台高架换乘车站火灾情况,在地铁同站台高架换乘车站站厅层应急疏散路径关键节点部位开展0.25~0.75 MW规模的全尺寸实验,结合流速、烟气温度和现场观测情况,对自然通风条件下不同部位起火时的火灾危险性进行分析。结果表明:该结构车站站厅火灾危险程度受火源规模、装修形式和通风条件的影响,站厅中部闸机附近起火时,火源阻塞了站厅中部的疏散路径,掺混大量空气的低温烟气在站厅两侧出站闸机处沉降至地面高度;楼扶梯入口处起火时,站内各区域能够形成稳定的烟气分层,人眼高度能见度较高;出入口附近起火时,受自然风的影响,火源下风向区域烟气沉降严重,人眼高度的能见度较低,不利于人员疏散;在实验火灾规模下站厅各区域沉降至危险高度的烟气最高温度为30~41℃。针对此类结构车站站厅的防排烟设计,应综合考虑出入口空间布局和吊顶形式对火灾危险性的影响,利用自然风压形成一定通风换气量,同时,应将掺混空气的低温烟气控制在较小区域内,确保人员疏散路径的能见度和烟气浓度处于安全水平。  相似文献   
9.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。  相似文献   
10.
为了全面了解在不同通风模式下地铁十字换乘车站站厅火灾发展规律,通过在8A编组地铁十字换乘车站公共站厅层开展1 MW规模的全尺寸火灾实验,对不同通风模式下换乘地铁车站站厅层公共区火灾场景下的烟气前锋到达时间、烟气扩散与沉降范围和楼扶梯处温度等参数进行分析研究。研究结果表明:在换乘线路A线站厅层发生火灾时,受到出入口自然风以及站厅层空间结构的影响,站厅内形成了由站厅北侧向南侧方向的风压,有效抑制了烟气向B线站厅扩散;通风排烟系统能够有效降低烟气扩散速率,控制烟气扩散范围和沉降高度;针对此类结构车站站厅的防排烟设计,应综合考虑通风、出入口位置和空间构筑物对火灾烟气扩散的影响,确保火灾过程中人员疏散路径和楼扶梯处烟气层高度和烟气温度处于安全水平。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号