首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Concentrations of 38 gas-phase organic air toxics were measured over a 2-yr period at four different sites in and around Pittsburgh, PA, to investigate spatial variations in health risks from chronic exposure. The sites were chosen to represent different exposure regimes: a downtown site with substantial mobile source emissions; two residential sites adjacent to one of the most heavily industrialized zones in Pittsburgh; and a regional background site. Lifetime cancer risks and non-cancer hazard quotients were estimated using a traditional and interactive risk models. Although study average concentrations of specific air toxics varied by as a much as a factor of 26 between the sites, the additive cancer risks of the gas-phase organic air toxics varied by less than a factor of 2, ranging from 6.1 × 10-5 to 9.5 × 10-5. The modest variation in risks reflects the fact that two regionally distributed toxics, formalde-hyde and carbon tetrachloride (CCl4), contributed more than half of the cancer risk at all four sites. Benzene contributed substantial cancer risks at all sites, whereas trichloroethene and 1,4-dichlorobenzene only contributed substantial cancer risks at the downtown site. Only acrolein posed a non-cancer risk. Diesel particulate matter is estimated to pose a much greater cancer risk in Pittsburgh than other classes of air toxics including gas-phase organic, metals, polycyclic aromatic hydrocarbons, and coke oven emissions. Health risks of air toxics in Pittsburgh are comparable with those in other urban areas in the United States.  相似文献   

2.
The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxics assessments in Environmental Justice applications, epidemiological studies, and environmental health risk assessments. In this study, we developed and applied a method to characterize air toxics concentrations in urban areas using results of the recently conducted field study in Wilmington, DE. Mobile measurements were collected over a 4- x 4-km area of downtown Wilmington for three components: formaldehyde (representative of volatile organic compounds and also photochemically reactive pollutants), aerosol size distribution (representing fine particulate matter), and water-soluble hexavalent chromium (representative of toxic metals). These measurements were,used to construct spatial and temporal distributions of air toxics in the area that show a very strong temporal variability, both diurnally and seasonally. An analysis of spatial variability indicates that all pollutants varied significantly by location, which suggests potential impact of local sources. From the comparison with measurements at the central monitoring site, we conclude that formaldehyde and fine particulates show a positive correlation with temperature, which could also be the reason that photochemically generated formaldehyde and fine particulates over the study area correlate well with the fine particulate matter measured at the central site.  相似文献   

3.
Abstract

The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

4.
The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.  相似文献   

5.
Under the Clean Air Act Amendments, the United States Environmental Protection Agency is required to regulate emissions of 188 hazardous air pollutants. The EPA, Office of Air Quality Planning and Standards is currently conducting a National-scale Air Toxics Assessment with a goal to identify air toxics which are of greatest concern, in terms of contribution to population inhalation risk. The results will be used to set priorities for the collection of additional air toxics emissions and monitoring data. Expanded ambient air toxics monitoring will take the form of a national air toxics monitoring network. With all monitoring data, however, comes uncertainty in the form of environmental variability (spatial and temporal) and monitoring error (sample collection and laboratory analysis). With this in mind, existing data from the Urban Air Toxics Monitoring Program (UATMP) were analyzed to obtain a general understanding of these sources of variability and then provide recommendations for managing the data uncertainties of a national network. The results indicate that environmental variability, in particular temporal, comprises most of the overall variability observed in the UATMP data. However, at lower ambient levels (on the order of 0.1–0.5 ppbv or lower) environmental variability tends to dissipate and monitoring error takes over, most notably analytical error. Overall, the results suggest that common techniques in ambient air toxics monitoring for carbonyls and volatile organic compounds may satisfy many of the primary objectives of a national air toxics monitoring network.  相似文献   

6.
An odor of unknown origin described as a “tar” or “asphalt” smell has become unbearable for many of Globeville, CO, residents over the past few years. Residents report during odor events burning eyes and throat, headaches, skin irritation, and problems sleeping. This study was undertaken to identify the potential sources of the odor and the concentrations of air pollutants making up the odor by conducting meteorological correlations and sampling for a panel of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the neighborhood and near suspected sources. Wind speed and direction data collected every 1 min in the neighborhood indicate that when the odor is noticed, the community is directly downwind of a wood preservation facility and an asphalt roofing facility. Air samples collected during high-intensity odor events have shown concentrations of methylene chloride, hexane, toluene, naphthalene, dibenz[a,h]anthracene, benzo[g,h,i]perylene, and indeno[1,2,3-cd]pyrene, each at least two times higher than background concentrations. Naphthalene and the other PAHs are known pollutants emitted from wood treatment processes, and are known to have a coal tar odor. Naphthalene was present in a sample collected directly adjacent to the Koppers facility and was not present in any background samples. Single-compound odor and health thresholds, however, were never surpassed. Given the technical and regulatory challenges of sampling odors and controlling emissions, it is recommended that Globeville residents and neighboring industry pursue a “good neighbor policy” to solve the odor issue. Specific offending industrial processes could be identified for which there exist cost-effective control technologies that would reduce exposure to odors and air toxics in Globeville.

Implications: Meteorological correlations and samples of volatile organic compounds (VOCs), sulfur gases, and polycyclic aromatic hydrocarbons (PAHs) in the Globeville, CO, neighborhood and near suspected sources during odor events indicate potential industrial sources of a transient and noxious odor. Legislative approaches have proven unfruitful and no health or odor thresholds were typically violated. New approaches are warranted to address odor mixture effects in neighborhoods near industrial facilities.  相似文献   

7.
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.  相似文献   

8.
Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.  相似文献   

9.
The Clean Air Act identifies 189 hazardous air pollutants (HAPs), or "air toxics," associated with a wide range of adverse human health effects. The U.S. Environmental Protection Agency has conducted a modeling study with the Assessment System for Population Exposure Nationwide (ASPEN) to gain a greater understanding of the spatial distribution of concentrations of these HAPs resulting from contributions of multiple emission sources. The study estimates year 1990 long-term outdoor concentrations of 148 air toxics for each census tract in the continental United States, utilizing a Gaussian air dispersion modeling approach. Ratios of median national modeled concentrations to estimated emissions indicate that emission totals without consideration of emission source type can be a misleading indicator of air quality. The results also indicate priorities for improvements in modeling methodology and emissions identification. Model performance evaluation suggests a tendency for underprediction of observed concentrations, which is likely due, at least in part, to a number of limitations of the Gaussian modeling formulation. Emissions estimates for HAPs have a high degree of uncertainty and contribute to discrepancies between modeled and monitored concentration estimates. The model's ranking of concentrations among monitoring sites is reasonably good for most of the gaseous HAPs evaluated, with ranking accuracy ranging from 66 to 100%.  相似文献   

10.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

11.
Ambient measurements of hazardous air pollutants (HAPs, air toxics) collected in the United States from 1990 to 2005 were analyzed for diurnal, seasonal, and/or annual variability and trends. Visual and statistical analyses were used to identify and quantify temporal variations in air toxics at national and regional levels. Sufficient data were available to analyze diurnal variability for 14 air toxics, seasonal variability for 24 air toxics, and annual trends for 26 air toxics. Four diurnal variation patterns were identified and labeled invariant, nighttime peak, morning peak, and daytime peak. Three distinct seasonal patterns were identified and labeled invariant, cool, and warm. Multiple air toxics showed consistent decreasing trends over three trend periods, 1990–2005, 1995–2005, and 2000–2005. Trends appeared to be relatively consistent within chemically similar pollutant groups. Hydrocarbons such as benzene, 1,3-butadiene, styrene, xylene, and toluene decreased by approximately 5% or more per year at more than half of all monitoring sites. Concentrations of carbonyl compounds such as formaldehyde, acetaldehyde, and propionaldehyde were equally likely to have increased or decreased at monitoring sites. Chlorinated volatile organic compounds (VOCs) such as tetrachloroethylene, dichloromethane, and methyl chloroform decreased at more than half of all monitoring sites, but decreases among these species were much more variable than among the hydrocarbons. Lead particles decreased in concentration at most monitoring sites, but trends in other metals were not consistent over time.  相似文献   

12.
Abstract

A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

13.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   

14.
Mobile sources significantly contribute to ambient concentrations of airborne particulate matter (PM). Source apportionment studies for PM10 (PM < or = 10 microm in aerodynamic diameter) and PM2.5 (PM < or = 2.5 microm in aerodynamic diameter) indicate that mobile sources can be responsible for over half of the ambient PM measured in an urban area. Recent source apportionment studies attempted to differentiate between contributions from gasoline and diesel motor vehicle combustion. Several source apportionment studies conducted in the United States suggested that gasoline combustion from mobile sources contributed more to ambient PM than diesel combustion. However, existing emission inventories for the United States indicated that diesels contribute more than gasoline vehicles to ambient PM concentrations. A comprehensive testing program was initiated in the Kansas City metropolitan area to measure PM emissions in the light-duty, gasoline-powered, on-road mobile source fleet to provide data for PM inventory and emissions modeling. The vehicle recruitment design produced a sample that could represent the regional fleet, and by extension, the national fleet. All vehicles were recruited from a stratified sample on the basis of vehicle class (car, truck) and model-year group. The pool of available vehicles was drawn primarily from a sample of vehicle owners designed to represent the selected demographic and geographic characteristics of the Kansas City population. Emissions testing utilized a portable, light-duty chassis dynamometer with vehicles tested using the LA-92 driving cycle, on-board emissions measurement systems, and remote sensing devices. Particulate mass emissions were the focus of the study, with continuous and integrated samples collected. In addition, sample analyses included criteria gases (carbon monoxide, carbon dioxide, nitric oxide/nitrogen dioxide, hydrocarbons), air toxics (speciated volatile organic compounds), and PM constituents (elemental/organic carbon, metals, semi-volatile organic compounds). Results indicated that PM emissions from the in-use fleet varied by up to 3 orders of magnitude, with emissions generally increasing for older model-year vehicles. The study also identified a strong influence of ambient temperature on vehicle PM mass emissions, with rates increasing with decreasing temperatures.  相似文献   

15.
Abstract

The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

16.
A growing number of epidemiological studies conducted worldwide suggest an increase in the occurrence of adverse health effects in populations living, working, or going to school near major roadways. A study was designed to assess traffic emissions impacts on air quality and particle toxicity near a heavily traveled highway. In an attempt to describe the complex mixture of pollutants and atmospheric transport mechanisms affecting pollutant dispersion in this near-highway environment, several real-time and time-integrated sampling devices measured air quality concentrations at multiple distances and heights from the road. Pollutants analyzed included U.S. Environmental Protection Agency (EPA)-regulated gases, particulate matter (coarse, fine, and ultrafine), and air toxics. Pollutant measurements were synchronized with real-time traffic and meteorological monitoring devices to provide continuous and integrated assessments of the variation of near-road air pollutant concentrations and particle toxicity with changing traffic and environmental conditions, as well as distance from the road. Measurement results demonstrated the temporal and spatial impact of traffic emissions on near-road air quality. The distribution of mobile source emitted gas and particulate pollutants under all wind and traffic conditions indicated a higher proportion of elevated concentrations near the road, suggesting elevated exposures for populations spending significant amounts of time in this microenvironment. Diurnal variations in pollutant concentrations also demonstrated the impact of traffic activity and meteorology on near-road air quality. Time-resolved measurements of multiple pollutants demonstrated that traffic emissions produced a complex mixture of criteria and air toxic pollutants in this microenvironment. These results provide a foundation for future assessments of these data to identify the relationship of traffic activity and meteorology on air quality concentrations and population exposures.  相似文献   

17.
The impacts of emissions plumes from major industrial sources on black carbon (BC) and BTEX (benzene, toluene, ethyl benzene, xylene isomers) exposures in communities located >10 km from the industrial source areas were identified with a combination of stationary measurements, source identification using positive matrix factorization (PMF), and dispersion modeling. The industrial emissions create multihour plume events of BC and BTEX at the measurement sites. PMF source apportionment, along with wind patterns, indicates that the observed pollutant plumes are the result of transport of industrial emissions under conditions of low boundary layer height. PMF indicates that industrial emissions contribute >50% of outdoor exposures of BC and BTEX species at the receptor sites. Dispersion modeling of BTEX emissions from known industrial sources predicts numerous overnight plumes and overall qualitative agreement with PMF analysis, but predicts industrial impacts at the measurement sites a factor of 10 lower than PMF. Nonetheless, exposures associated with pollutant plumes occur mostly at night, when residents are expected to be home but are perhaps unaware of the elevated exposure. Averaging data samples over long times typical of public health interventions (e.g., weekly or biweekly passive sampling) misapportions the exposure, reducing the impact of industrial plumes at the expense of traffic emissions, because the longer samples cannot resolve subdaily plumes. Suggestions are made for ways for future distributed pollutant mapping or intervention studies to incorporate high time resolution tools to better understand the potential impacts of industrial plumes.

Implications: Emissions from industrial or other stationary sources can dominate air toxics exposures in communities both near the source and in downwind areas in the form of multihour plume events. Common measurement strategies that use highly aggregated samples, such as weekly or biweekly averages, are insensitive to such plume events and can lead to significant under apportionment of exposures from these sources.  相似文献   


18.
Catalytic oxidation is an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emission stream are oxidized with the help of a catalyst Design of catalytic systems for control of point source emissions is based on stream-specific characteristics and desired control efficiency. This paper discusses the key emission stream characteristics and VOC characteristics that affect the applicability of catalytic oxidation. The application of catalytic oxidation technology to four types of air emission sources is discussed: (1) groundwater stripping operations; (2) graphic arts facilities; (3) flexographic printing plants; and (4) latex monomer production. The characteristics of each of these emissions are discussed along with the catalytic technology used to control these emissions.  相似文献   

19.
The Houston-Galveston metropolitan area has a relatively high density of point and mobile sources of air toxics, and determining and understanding the relationship between emissions and ambient air concentrations of air toxics is important for evaluating potential impacts on public health and formulating effective regulatory policies to control this impact, both in this region and elsewhere. However, conventional ambient air monitoring approaches are limited with regard to expense, siting limitations, and representative sampling necessary for adequate exposure assessment. The overall goal of this multiphase study is to evaluate the use of simple passive air samplers to determine temporal and spatial variability of the ambient air concentrations of selected volatile organic compounds (VOCs) in urban areas. Phase 1 of this study, reported here, was a field evaluation of 3M organic vapor monitors (OVMs) involving limited comparisons with commonly used active sampling methods, an assessment of sampler precision, a determination of optimal sampling duration, and an investigation of the utility of a simple modification of the commercial sampler. The results indicated that a sampling duration of 72 hr exhibited generally low bias relative to automated continuous gas chromatography measurements, good overall precision, and an acceptable number of measurements above detection limits. The modified sampler showed good correlation with the commercial sampler, with higher sampling rates, although lower than expected.  相似文献   

20.
Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor, and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NOx), particulate matter (<2.5 μm diameter; PM2.5) mass, ultrafine particle (UFP; <100 nm diameter) number, black carbon (BC), speciated HAPs (e.g., benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally greater than differences among the three communities for the same ME category, suggesting that the ME proximity factors may be more broadly applicable to urban MEs.
Implications:Estimates of population exposure to air pollutants extrapolated from ambient measurements at ambient fixed site monitors or exposure surrogates are prone to uncertainty. This study measured concentrations of mobile source air toxics (MSAT) and related criteria pollutants within in-vehicle, outdoor near-road, and indoor urban MEs to provide multipollutant ME measurements that can be used to calibrate regulatory exposure models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号