首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We report on ambient atmospheric aerosols present at sea during the Atlantic–Mediterranean voyage of Oceanic II (The Scholar Ship) in spring 2008. A record was obtained of hourly PM10, PM2.5, and PM1 particle size fraction concentrations and 24-h filter samples for chemical analysis which allowed for comparison between levels of crustal particles, sea spray, total carbon, and secondary inorganic aerosols. On-board monitoring was continuous from the equatorial Atlantic to the Straits of Gibraltar, across the Mediterranean to Istanbul, and back via Lisbon to the English Channel. Initially clean air in the open Atlantic registered PM10 levels <10 μg m?3 but became progressively polluted by increasingly coarse PM as the ship approached land. Away from major port cities, the main sources of atmospheric contamination identified were dust intrusions from North Africa (NAF), smoke plumes from biomass burning in sub-Saharan Africa and Russia, industrial sulphate clouds and other regional pollution sources transported from Europe, sea spray during rough seas, and plumes emanating from islands. Under dry NAF intrusions PM10 daily mean levels averaged 40–60 μg m?3 (30–40 μg m?3 PM2.5; c. 20 μg m?3 PM1), peaking briefly to >120 μg m?3 (hourly mean) when the ship passed through curtains of higher dust concentrations amassed at the frontal edge of the dust cloud. PM1/PM10 ratios ranged from very low during desert dust intrusions (0.3–0.4) to very high during anthropogenic pollution plume events (0.8–1).  相似文献   

2.
Recent research interest has been focused on road dust resuspension as one of the major sources of atmospheric particulate matter in an urban environment. Given the dearth of studies on the variability of the PM10 fraction of road deposited sediments, our understanding of the main factors controlling this pollutant is incomplete. In the present study a new sampling methodology was devised and applied to collect PM10 deposited mass from 1 m2 of road pavement. PM10 road dust fraction was sampled directly from active traffic lanes at 23 sampling sites during a campaign in Barcelona (Spain) in June 2007. The aim of the study was to gain more insight into the variability of mass and chemistry of road dust in different urban environments, such as the city centre, ring roads, and locations nearby demolition/construction sites. The city centre showed values of PM10 road dust within a range of 3–23 mg m?2, whereas levels reached 24–80 mg m?2 in locations affected by transport of uncovered heavy trucks. The largest dust loads were measured in the proximity of demolition/construction sites and the harbor entry with values up to 328 mg m?2.The city centre road dust profiles (%) were enriched in OC, EC, Fe, S, Cu, Zn, Mn, Cr, Sb, Sn, Mo, Zr, Hf, Ge, Ba, Pb, Bi, SO42?, NO3?, Cl? and NH4+, but several crustal components such as Ca, Ti, Na, and Mg were also considerably concentrated. Locations affected by construction and demolition activities had high levels of crustal components such as Ca, Li, Sc, Sr, Rb and also As whereas ring roads, characterized by a higher load of uncovered heavy trucks showed an intermediate composition.Levels of PM10 components per area were also evaluated to quantify the resuspendable amount of each element from 1 m2. In the inner city environment mean values of 1363 μg Ca m?2, 816 μg OC m?2, 239 μg EC m?2, 13 μg Cu m?2, 12 μg Zn m?2, 1.9 μg Sb m?2 and 2.0 μg Pb m?2, in PM10 in all cases, were registered.Moreover the deposited PM load at demolition/construction sites acts as a reservoir or trap for traffic-related particles, which gives rise to large amounts of hazardous pollutants, available for resuspension.  相似文献   

3.
PM10 measurements were started in November 1992 at Melpitz site. The mean PM10 concentration in 1993 was 38 μg m?3 in the summer season (May until October) and about 44 μg m?3 in the winter season (November until April). The mean PM10 level decreased until 1999 and varies now in ranges from 20–34 μg m?3 to 17–24 μg m?3 (minimum and maximum mean values for 1999–2008) in winter and summer seasons, respectively. High volume filter samples of particles PM10, PM2.5 and PM1 were characterized for mass, water-soluble ions, organic and elemental carbon from 2004 until 2008. The percentage of PM2.5 in PM10 varies between summer (71.6%) and winter seasons (81.9%). Mean concentrations of PM10, PM2.5 and PM1 in Melpitz were 20, 15, and 13 μg m?3 in 2004, 22, 18, and 13 μg m?3 in 2005, 24, 19, and 12 μg m?3 in 2006 and 22, 17, and 12 μg m?3 in 2007, respectively. In the four winters the rural background concentration PM10 at Melpitz exceeded the daily 50 μg m?3 limit for Europe on 8, 8, 7 and 6 days, respectively.Findings for a simple two-sector-classification of the samples (May 2004 until April 2008) using 96-h backward trajectories for the identification of source regions are: Air masses were transported most of time (60%) from the western sector and secondly (17%) from the eastern sector. The lowest daily mean mass concentration PM10 were found during western inflow in summer (17 μg m?3) containing low amounts of sulphate (2.4 μg m?3), nitrate (1.7 μg m?3), ammonium (1.1 μg m?3) and TC (3.7 μg m?3). In opposite the highest mean mass concentration PM10 was found during eastern inflow in winter (35 μg m?3) with high amounts of sulphate (6.1 μg m?3), nitrate (5.4 μg m?3), ammonium (3.8 μg m?3) and TC (9.4 μg m?3). An estimation of secondary formed OC (SOA) shows 0.8–0.9 μg m?3 for air masses from West and 2.1–2.2 μg m?3 from East. The seasonal difference can be neglected.The half-hourly measurements of the particle mass concentration PM10 evaluated as mean daily courses using a TEOM® show low values (14–21 μg m?3) in summer and winter for air masses transported from West and the highest concentrations (31–38 μg m?3) in winter for air masses from East.The results demonstrate the influence of meteorological parameters on long-range transport, secondary particle mass formation and re-emission which modify mass concentration and composition of PM10, PM2.5 and PM1. Melpitz site is located in the East of Germany faraway from strong local anthropogenic emissions (rural background). Therefore, this site is suitable for investigation of the influence of long-range transport of air pollution in continental air masses from the East with source regions inside and outside of the European Union.  相似文献   

4.
A three dimensional chemical transport model (PMCAMx) is applied to the Mexico City Metropolitan Area (MCMA) in order to simulate the chemical composition and mass of the major PM1 (fine) and PM1–10 (coarse) inorganic components and determine the effect of mineral dust on their formation. The aerosol thermodynamic model ISORROPIA-II is used to explicitly simulate the effect of Ca, Mg, and K from dust on semi-volatile partitioning and water uptake. The hybrid approach is applied to simulate the inorganic components, assuming that the smallest particles are in thermodynamic equilibrium, while describing the mass transfer to and from the larger ones. The official MCMA 2004 emissions inventory with improved dust and NaCl emissions is used. The comparison between the model predictions and measurements during a week of April of 2003 at Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA) “Supersite” shows that the model reproduces reasonably well the fine mode composition and its diurnal variation. Sulfate predicted levels are relatively uniform in the area (approximately 3 μg m?3), while ammonium nitrate peaks in Mexico City (approximately 7 μg m?3) and its concentration rapidly decreases due to dilution and evaporation away from the urban area. In areas of high dust concentrations, the associated alkalinity is predicted to increase the concentration of nitrate, chloride and ammonium in the coarse mode by up to 2 μg m?3 (a factor of 10), 0.4 μg m?3, and 0.6 μg m?3 (75%), respectively. The predicted ammonium nitrate levels inside Mexico City for this period are sensitive to the physical state (solid versus liquid) of the particles during periods with RH less than 50%.  相似文献   

5.
Thoracic (PM10), fine thoracic (PM2.5) and sub-micrometer (PM1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11–29, 8.1–24, and 6.6–18 μg m?3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m?3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO3? levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl? were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m?3 and were strongly correlated with outdoor traffic conditions.  相似文献   

6.
Despite their burden in urban particulate air pollution, road traffic non-exhaust emissions are often uncontrolled and information about the effectiveness of mitigation measures on paved roads is still scarce. The present study is aimed to evaluate the effectiveness of mechanical sweeping/water flushing treatments in mitigating urban road dust resuspension and to quantify the real benefit in terms of ambient PM10 concentrations. To this aim a specific campaign was carried out in a heavily trafficked central road of Barcelona (Spain), a Mediterranean city suffering from a traffic-related pollution, both for a high car density and a frequent lack of precipitation. Several street washings were performed by means of mechanical sweepers and pressure water during night in all traffic lanes and sidewalks. PM10 levels were simultaneously compared with four reference urban background air quality stations to interpret any meteorological variability. At the downwind measurement site, PM10 concentrations registered a mean daily decrease of 8.8 μg m?3 during the 24 h after street washing treatments. However 3.7–4.9 μg m?3 of such decrease were due to the meteorological variability detected at the upwind site, as well as at two of the reference sites. This reveals that an effective decrease of 4–5 μg m?3 (7–10%) can be related to street washing efficiency. Mitigation of road dust resuspension was confirmed by investigating the chemical composition of airborne-PM10 filters. Concentrations of Cu, Sb, Fe and mineral matter decrease significantly with respect to concentrations of elemental carbon, used as tracer for exhaust diesel emissions. High efficiency of street washing in reducing road dust loads was found by performing periodic samplings both on the treated and the untreated areas.  相似文献   

7.
This paper presents results from an in-vehicle air quality study of public transit buses in Toledo, Ohio, involving continuous monitoring, and experimental and statistical analyses to understand in-vehicle particulate matter (PM) behavior inside buses operating on B20-grade biodiesel fuel. The study also focused on evaluating the effects of vehicle’s fuel type, operating periods, operation status, passenger counts, traffic conditions, and the seasonal and meteorological variation on particulates with aerodynamic diameter less than 1 micron (PM1.0). The study found that the average PM1.0 mass concentrations in B20-grade biodiesel-fueled bus compartments were approximately 15 μg m?3, while PM2.5 and PM10 concentration averages were approximately 19 μg m?3 and 37 μg m?3, respectively. It was also observed that average hourly concentration trends of PM1.0 and PM2.5 followed a “μ-shaped” pattern during transit hours.Experimental analyses revealed that the in-vehicle PM1.0 mass concentrations were higher inside diesel-fueled buses (10.0–71.0 μg m?3 with a mean of 31.8 μg m?3) as compared to biodiesel buses (3.3–33.5 μg m?3 with a mean of 15.3 μg m?3) when the windows were kept open. Vehicle idling conditions and open door status were found to facilitate smaller particle concentrations inside the cabin, while closed door facilitated larger particle concentrations suggesting that smaller particles were originating outside the vehicle and larger particles were formed within the cabin, potentially from passenger activity. The study also found that PM1.0 mass concentrations at the back of bus compartment (5.7–39.1 μg m?3 with a mean of 28.3 μg m?3) were higher than the concentrations in the front (5.7–25.9 μg m?3 with a mean of 21.9 μg m?3), and the mass concentrations inside the bus compartment were generally 30–70% lower than the just-outside concentrations. Further, bus route, window position, and time of day were found to affect the in-vehicle PM concentrations significantly. Overall, the in-vehicle PM1.0 concentrations inside the buses operating on B20-grade biodiesel ranged from 0.7 μg m?3 to 243 μg m?3, with a median of 11.6 μg m?3.Statistical models developed to study the effects of vehicle operation and ambient conditions on in-vehicle PM concentrations suggested that while open door status was the most important influencing variable for finer particles and higher passenger activity resulted in higher coarse particles concentrations inside the vehicle compartments, ambient PM concentrations contributed to all PM fractions inside the bus irrespective of particle size.  相似文献   

8.
In developed nations people spend about 90% of their time indoors. The relationship between indoor and outdoor air pollution levels is important for the understanding of the health effects of outdoor air pollution. Although other studies describe both the outdoor and indoor atmospheric environment, few excluded a priori major indoor sources, measured the air exchange rate, included more than one micro-environment and included the presence of human activity. PM2.5, soot, NO2 and the air exchange rate were measured during winter and summer indoors and outdoors at 18 homes (mostly apartments) of 18 children (6–11-years-old) and also at the six schools and 10 pre-schools that the children attended. The three types of indoor environments were free of environmental tobacco smoke and gas appliances, as the aim was to asses to what extent PM2.5, soot and NO2 infiltrate from outdoors to indoors. The median indoor and outdoor PM2.5 levels were 8.4 μg m?3 and 9.3 μg m?3, respectively. The median indoor levels for soot and NO2 were 0.66 m?1 × 10?5 and 10.0 μg m?3, respectively. The respective outdoor levels were 0.96 m?1 × 10?5 and 12.4 μg m?3. The median indoor/outdoor (I/O) ratios were 0.93, 0.76 and 0.92 for PM2.5, soot and NO2, respectively. Their infiltration factors were influenced by the micro-environment, ventilation type and air exchange rate, with aggregated values of 0.25, 0.55 and 0.64, respectively. Indoor and outdoor NO2 levels were strongly associated (R2 = 0.71), followed by soot (R2 = 0.50) and PM2.5 (R2 = 0.16). In Stockholm, the three major indoor environments occupied by children offer little protection against combustion-related particles and gases in the outdoor air. Outdoor PM2.5 seems to infiltrate less, but indoor sources compensate.  相似文献   

9.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

10.
The extent of the exceedance of the EU limit values for nitrogen dioxide (NO2) and particulate matter (PM10) concentrations within the Netherlands is expected to decrease significantly, in the coming years. Whether limit values will actually be exceeded, in the next decade, depends not only on European, national and local policies, but also on the effects of inevitable interannual meteorological fluctuations. An analysis of model calculations and measurements yields variations (1 sigma) in the annual average concentration of about 5% for NO2 and 9% for PM10, due to meteorological fluctuations. These deviations from long-term average concentrations affect assessments of future levels, set against limit values. For instance, an NO2 concentration of 39 μg m?3, estimated for a given year with long-term average meteorology, indicates that it is likely (chance >66%) that the limit value of 40 μg m?3 will not be exceeded in that particular year. At the same time, the estimation also indicates, for example, that this situation is unlikely (change <33%) to continue for three years in a row. However, with an estimated concentration of 38 μg m?3, it is likely that the limit value will not be exceeded for three years in a row. The limit value for the daily average PM10 concentration is equivalent to an annual average of about 32 μg m?3. This threshold is unlikely to be exceeded for three years in a row, when an annual average concentration of 29 μg m?3 is estimated. Interannual variations in concentrations of NO2 and PM10 are linked to large-scale meteorological fluctuations. Therefore, similar results can be expected for other European countries.  相似文献   

11.
Personal exposure to particulate matter of aerodynamic diameter under 2.5 μm (PM2.5) was monitored using a DustTrak nephelometer. The battery-operated unit, worn by an adult individual for a period of approximately one year, logged integrated average PM2.5 concentrations over 5 min intervals. A detailed time-activity diary was used to record the experimental subject’s movement and the microenvironments visited. Altogether 239 days covering all the months (except April) were available for the analysis. In total, 60 463 acceptable 5-min averages were obtained. The dataset was divided into 7 indoor and 4 outdoor microenvironments. Of the total time, 84% was spent indoors, 10.9% outdoors and 5.1% in transport. The indoor 5-min PM2.5 average was higher (55.7 μg m?3) than the outdoor value (49.8 μg m?3). The highest 5-min PM2.5 average concentration was detected in restaurant microenvironments (1103 μg m?3), the second highest 5-min average concentration was recorded in indoor spaces heated by stoves burning solid fuels (420 μg m?3). The lowest 5-min mean aerosol concentrations were detected outdoors in rural/natural environments (25 μg m?3) and indoors at the monitored person’s home (36 μg m?3). Outdoor and indoor concentrations of PM2.5 measured by the nephelometer at home and during movement in the vicinity of the experimental subject’s home were compared with those of the nearest fixed-site monitor of the national air quality monitoring network. The high correlation coefficient (0.78) between the personal and fixed-site monitor aerosol concentrations suggested that fixed-site monitor data can be used as proxies for personal exposure in residential and some other microenvironments. Collocated measurements with a reference method (β-attenuation) showed a non-linear systematic bias of the light-scattering method, limiting the use of direct concentration readings for exact exposure analysis.  相似文献   

12.
Global emissions reported by many authors have shown as natural and anthropic sources can contribute to the principal aerosol classes, but values change according the local scenario. The Venice Lagoon is exposed to different anthropic source emissions like vehicular traffic, industrial thermoelectric power plant, petrochemical plant, incinerator plant, domestic heating, ship traffic, glass factories and airport. Samplings of PM2.5 were daily performed between March and November 2007 in Sacca San Biagio island (Venice), and values of PM2.5 concentration and element concentration were obtained. Monthly average concentrations (μg m?3) during this period show higher values during the spring and the autumn. A good relationship between data obtained and concentration values from environmental local agencies is evidenced, both for PM2.5 from urban area (Venezia Mestre), and for PM10 sampled in the same area, as well as the influence of some meteorological parameters on PM2.5 concentration sampled. Trace elements samples were measured by an Inductively Coupled Plasma-Quadrupole Mass Spectrometry (ICP-QMS), and values (ng m?3 and μg g?1) for elements regulated by European directives (As, Cd, Ni, Pb), as well as, other elements (Na, Al, K, Ti, V, Mn, Fe, Co, Zn, Se, Ag) are also reported. Data analysis by mean of Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF) pointed out four principal groups of elements like Mn–Fe–K, As–Se–Cd, V–Co, and Pb that could be assigned to specific sources of the Venetian wetland basin.  相似文献   

13.
In this work we present a detailed study of atmospheric PM10 pollution in Andalusia (Southern Spain) based on geochemical maps. The study includes determination of PM10 levels and bulk chemical composition with samples from 17 representative monitoring stations (rural, urban background, traffic hot spot, and urban zones with industrial influence) during 2007. The knowledge of background levels and concentrations of relevant chemical compounds and elements allows the quantification of the main sources of pollution in relevant cities and sites of ecological interest.In comparison to other stations in Spain and mainland Europe, PM10 in Andalusia is characterized by high levels of crustal matter and secondary inorganic components (SIC). This has been attributed to the following causes: 1) High road traffic and industrial emissions, 2) High frequency of North African air mass outbreaks contributing between 3 and 4 μg m?3 in western Andalusia and 4–7 μg m?3 in eastern Andalusia, and 3) Climate factors such as low rainfall, dry soils favouring resuspension, and high photochemical activity.Atmospheric particulate matter in urban areas located in the vicinity of industrial estates is enriched in secondary inorganic compounds and metals. Three main hot spots have been identified according their high trace element concentrations: Huelva (As, Cu, Zn, Se, and Bi), Strait of Gibraltar (V, Ni, Cr, and Co) and Bailén (V and Ni). The transport of pollutants from cities and industrial estates to areas of ecological interest (e.g. Doñana National Park) has been found to cause the increase in background levels in a number of trace elements (e.g. As) in the air. An important outcome of this study is that geochemical maps of atmospheric matter are a powerful tool for illustrating spatial variation patterns of geochemical components and identifying specific pollution hot spots.  相似文献   

14.
An indoor/outdoor monitoring programme of PM10 was carried out in two sports venues (a fronton and a gymnasium). Levels always below 50 μg m?3 were obtained in the fronton and outdoor air. Due to the climbing chalk and the constant process of resuspension, concentrations above 150 μg m?3 were registered in the gymnasium. The chalk dust contributed to CO3 2? concentrations of 32?±?9.4 μg m?3 in this sports facility, which represented, on average, 18 % of the PM10 mass. Here, the carbonate levels were 128 times higher than those registered outdoors. Much lower concentrations, around 1 μg m?3, were measured in the fronton. The chalk dust is also responsible for the high Mg2+ concentrations in the gym (4.7?±?0.89 μg m?3), unfolding a PM10 mass fraction of 2.7 %. Total carbon accounted for almost 30 % of PM10 in both indoor spaces. Aerosol size distributions were bimodal and revealed a clear dependence on physical activities and characteristics of the sports facilities. The use of climbing chalk in the gymnasium contributed significantly to the coarse mode. The average geometric mean diameter, geometric standard deviation and total number of coarse particles were 0.77 μm, 2.79 cm?3 and 28 cm?3, respectively.  相似文献   

15.
The Detroit Exposure and Aerosol Research Study (DEARS) provided data to compare outdoor residential coarse particulate matter (PM10–2.5) concentrations in six different areas of Detroit with data from a central monitoring site. Daily and seasonal influences on the spatial distribution of PM10–2.5 during Summer 2006 and Winter 2007 were investigated using data collected with the newly developed coarse particle exposure monitor (CPEM). These data allowed the representativeness of the community monitoring site to be assessed for the greater Detroit metro area. Multiple CPEMs collocated with a dichotomous sampler determined the precision and accuracy of the CPEM PM10–2.5 and PM2.5 data.CPEM PM2.5 concentrations agreed well with the dichotomous sampler data. The slope was 0.97 and the R2 was 0.91. CPEM concentrations had an average 23% negative bias and R2 of 0.81. The directional nature of the CPEM sampling efficiency due to bluff body effects probably caused the negative CPEM concentration bias.PM10–2.5 was observed to vary spatially and temporally across Detroit, reflecting the seasonal impact of local sources. Summer PM10–2.5 was 5 μg m?3 higher in the two industrial areas near downtown than the average concentrations in other areas of Detroit. An area impacted by vehicular traffic had concentrations 8 μg m?3 higher than the average concentrations in other parts of Detroit in the winter due to the suspected suspension of road salt. PM10–2.5 Pearson Correlation Coefficients between monitoring locations varied from 0.03 to 0.76. All summer PM10–2.5 correlations were greater than 0.28 and statistically significant (p-value < 0.05). Winter PM10–2.5 correlations greater than 0.33 were statistically significant (p-value < 0.05). The PM10–2.5 correlations found to be insignificant were associated with the area impacted by mobile sources during the winter. The suspected suspension of road salt from the Southfield Freeway, combined with a very stable atmosphere, caused concentrations to be greater in this area compared to other areas of Detroit. These findings indicated that PM10–2.5, although correlated in some instances, varies sufficiently across a complex urban airshed that that a central monitoring site may not adequately represent the population's exposure to PM10–2.5.  相似文献   

16.
Simultaneous measurements of the PM concentration levels and chemical composition of atmospheric aerosols at a regional background (RB) and an urban background (UB) site, located in the same geographic region, allowed for the determination of their urban and regional contributions. In the specific case of the North-Western region of the Mediterranean the RB amount has been quantified in 18, 13 and 12 μg m?3 for PM10, PM2.5 and PM1, respectively, whereas the UB contribution reached 22, 13 and 8 μg m?3, respectively. The UB contributions in the Western Mediterranean are much higher than those observed in other European regions; especially concerning the coarse fraction. The high loads of road dust in the urban areas across the Mediterranean may account for these large differences.The urban contributions are extremely enriched in Ca, Fe, Sb, Sn, Cu, Zn, being the main tracers of the road dust, with concentrations up to 6–8 times higher than those at the RB. Elemental carbon and nitrate are mainly derived from direct vehicular emissions. Some industrial tracers (Mn, Pb, Bi) are also enriched in the urban area. The evaluation of the Cu/Sb, Cu/Zn, Cu/Cd and Cu/Pb ratios and the high enrichment of these trace elements versus the Upper Crustal Composition average values corroborates the importance of the road-traffic emissions in the study area, also influencing the RB.The supplementary results from a suburban site in the Balearic Islands and the evaluation of the V/Ni ratios evidence the strong signature of fuel-oil combustion processes, which is a general characteristic of the Mediterranean aerosols.  相似文献   

17.
An apartment bedroom located in a residential area of Aveiro (Portugal) was selected with the aim of characterizing the cellulose content of indoor aerosol particles. Two sets of samples were taken: (1) PM10 collected simultaneously in indoor and outdoor air; (2) PM10 and PM2.5 collected simultaneously in indoor air. The aerosol particles were concentrated on quartz fibre filters with low-volume samplers equipped with size selective inlets. The filters were weighed and then extracted for cellulose analysis by an enzymatic method. The average indoor cellulose concentration was 1.01 ± 0.24 μg m?3, whereas the average outdoor cellulose concentration was 0.078 ± 0.047 μg m?3, accounting for 4.0% and 0.4%, respectively, of the PM10 mass. The corresponding average ratio between indoor and outdoor cellulose concentrations was 11.1 ± 4.9, indicating that cellulose particles were generated indoors, most likely due to the handling of cotton-made textiles as a result of routine daily activities in the bedroom. Indoor cellulose concentrations averaged 1.22 ± 0.53 μg m?3 in the aerosol coarse fraction (determined from the difference between PM10 and PM2.5 concentrations) and averaged 0.38 ± 0.13 μg m?3 in the aerosol fine fraction. The average ratio between the coarse and fine fractions of cellulose concentrations in the indoor air was 3.6 ± 2.1. This ratio is in line with the primary origin of this biopolymer. Results from this study provide the first experimental evidence in support of a significant contribution of cellulose to the mass of suspended particles in indoor air.  相似文献   

18.
Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM10 concentrations above 150 μg m?3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM10 observations during September–November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM10, and 40% of PM10 for days with 24-h average concentrations above 150 μg m?3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.  相似文献   

19.
Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM2.5 and PM10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM2.5 was 194 ± 94 μg m?3 and PM10 was 336 ± 135 μg m?3. Coarse aerosol (PM10?2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.  相似文献   

20.
Particulate pollution has been clearly linked with adverse health impacts from open fire cookstoves, and indoor air concentrations are frequently used as a proxy for exposures in health studies. Implicit are the assumptions that the size distributions for the open fire and improved stove are not significantly different, and that the relationship between indoor concentrations and personal exposures is the same between stoves. To evaluate the impact of these assumptions size distributions of particulate matter in indoor air were measured with the Sioutas cascade impactor in homes using open fires and improved Patsari stoves in a rural Purepecha community in Michoacan, Mexico. On average indoor concentrations of particles less than 0.25 μm were 72% reduced in homes with improved Patsari stoves, reflecting a reduced contribution of this size fraction to PM2.5 mass concentrations from 68% to 48%. As a result the mass median diameter of indoor PM2.5 particulate matter was increased by 29% with the Patsari improved stove compared to the open fire (from 0.42 μm to 0.59 μm, respectively). Personal PM2.5 exposure concentrations for women in homes using open fires were approximately 61% of indoor concentration levels (156 μg m?3 and 257 μg m?3 respectively). In contrast personal exposure concentrations were 77% times indoor air concentration levels for women in homes using improved Patsari stoves (78 μg m?3and 101 μg m?3 respectively). Thus, if indoor air concentrations are used in health and epidemiologic studies significant bias may result if the shift in size distribution and the change in relationship between indoor air concentrations and personal exposure concentrations are not accounted for between different stove types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号