首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
X53200703654施加电压对铬污染土壤电动修复的影响/孟凡生…(中国环科院)∥环境工程学报/中科院生态环境研究中心.-2007,1(3).-111~115环图X-4试验研究了不同电压条件下电动修复去除效率和单位能耗随施加电压的变化关系,探讨了电动修复经济有效的电压范围.试验选用重铬酸钾作为污染物,配制高岭土中Cr(Ⅵ)初始质量分数为100mg/kg和500mg/kg,含水量为50%,试验运行48h,用乙酸控制阴极pH在4~7之间,施加一系列不同直流电压.试验结果表明,随着施加电压升高,去除效率增大,电压升高到1V/cm时,去除效率显著升高,2种试验土壤去除效率分别为76.7%和89…  相似文献   

2.
铬(Ⅵ)污染高岭土电动修复影响因素研究   总被引:1,自引:0,他引:1  
通过正交试验研究了电动修复Cr(Ⅵ)污染高岭土的主要影响因素。试验选用重铬酸钾作为污染物,配制高岭土中Cr(Ⅵ)初始质量分数为500mg.kg-1。实验研究了电动修复过程施加电压、处理时间、含水量以及对阴极电解产生的OH-的控制等4种影响因素对修复效率的影响。正交实验结果表明对阴极电解产生的OH-的控制对修复效率影响最大,其次为施加电压和处理时间,含水量影响最小。阴极电极产生的OH-的控制试验表明电动修复过程中,一部分Cr(Ⅵ)还原为Cr(Ⅲ),Cr(Ⅲ)与阴极电解产生的OH-生成沉淀,从而显著影响其去除效率。随着施加电压、处理时间和含水率增加,Cr(Ⅵ)去除效率增加。各种因素综合作用下,最高去除效率为96.5%,最低仅为3.0%。土壤含水率对去除效率存在一定影响,建议下一步针对土壤含水率进行单因素研究。  相似文献   

3.
试验选用重铬酸钾作为污染物,配制高岭土中Cr(Ⅵ)初始质量分数为100mg/kg和500mg/kg。试验研究了对阴极电解产生的OH-的控制对电动修复效率的影响以及不同的控制方式对电动修复效率的影响。试验结果表明:对阴极电解产生的pH进行控制可以明显提高Cr(Ⅵ)去除效率;多种控制方式中,以盐酸的中和控制最为有效,可使去除效率达到90.8%,但引起的土壤酸化问题应当进一步进行研究。  相似文献   

4.
为研究不同阳极电解液初始pH值条件对铬污染土壤电动修复效率的影响,试验以氯化铜溶液为阴极电解液,不同初始pH值(pH=3、4、5)的柠檬酸-柠檬酸钠缓冲溶液为阳极电解液,并在阴极室靠近土壤处放置阳离子交换膜,以此阻隔阴极的OH-进入土壤,采用电动力学方法修复Cr(Ⅵ)污染土壤。结果表明:经过400h电动修复后,当阳极电解液初始pH=3时土壤中铬的去除效果最佳,此时靠近阴极部分S7区域土壤为最大截面去除率,达到84.5%。采用BCR四步连续提取法对电动修复前后铬污染土壤中铬的形态变化进行分析,结果表明电动修复过程中主要是对土壤中可氧化态和弱酸可提取态的铬进行了去除,而残渣态铬含量几乎不变。选用铜盐作为阴极电解液可以有效促进铬的迁移与去除。  相似文献   

5.
为明确EK/PRB(电动联合渗透反应格栅)修复As污染土壤过程中各因素的影响机理、提高As的去除效率,以As污染高岭土为研究对象,考察PRB加入、PRB位置、pH调控及腐殖酸强化影响下,EK/PRB系统中电流密度、土壤pH分布和土壤中As残余量、电渗透系数及电渗流的变化规律;探讨EK/PRB修复后土壤中As形态的迁移转化规律.结果表明:①单独EK修复对土壤中As的去除效率较低,加入PRB后去除率为由42%增至57%,并且EK/PRB修复可以将土壤中的As由不容易去除的可还原态转变成较容易去除的酸溶态.②采用盐酸调节阴极pH,可以将土壤中As的去除率由57%增至63%,但同时能耗也明显升高,由5.22 kW·h/g升至39.38 kW·h/g.③添加腐殖酸会促进土壤中As的迁移、提高As的去除效率,但也会增加土壤中难处理的可氧化态和残渣态As的占比.研究显示,EK/PRB除As过程中以PRB的去除作用为主,阴极pH调控及腐殖酸强化均可以提高土壤中As的去除率.   相似文献   

6.
不同的增强试剂对重金属污染场地土壤的电动修复影响   总被引:3,自引:0,他引:3  
选择重金属污染场地土壤为修复对象,研究了添加络合剂EDTA?有机酸乳酸和柠檬酸以及无机酸硝酸对电动修复该污染土壤的影响.结果表明,增强试剂的加入,显著促进了铜?铅?镍和六价铬在电场中的迁移和去除,电动过程促进了土壤重金属向有效态(醋酸铵提取)转化.其中,在阴极加入乳酸并控制pH3.5的处理,土壤中铜的去除率最高,达78.7%.在阴?阳极都加入EDTA的处理中,土壤中重金属的去除率在30%左右,重金属在靠近阴极的部分发生聚集.在阴极加入柠檬酸的处理中,土壤中铜?镍和六价铬的去除率均较高,分别为68.5%?53.3%和52.9%.阴极加入硝酸控制pH3.5对土壤中六价铬的去除率最高,达93.3%.  相似文献   

7.
阴极pH控制对污染土壤电动修复效率的影响   总被引:8,自引:0,他引:8  
就电动修复污染土壤过程中阴极电解产生的OH-对修复效率的影响进行了实验室研究. 实验选用重铬酸钾作为污染物,配制砂土和高岭土中初始w(Cr(Ⅵ))为100和500 mg/kg,施加恒定直流电压1 V/cm,运行48 h. 选用不同土壤和控制条件,实验共进行了10组. 分析了实验过程中电流变化以及实验完成后土壤pH分布和铬的迁移分布,并对每组实验Cr(Ⅵ)的去除率和电能消耗进行了计算. 结果表明:对阴极电解产生的pH进行控制可以明显提高Cr(Ⅵ)的去除率,同时电能耗变化不大;多种控制方式中,以盐酸的中和控制最为有效,可使去除率达到90.8%,但引起的土壤酸化问题应进一步进行研究;对电动过程中Cr(Ⅵ)的迁移转化应做深入研究.   相似文献   

8.
采用电动修复增强技术去除电镀污泥中重金属   总被引:6,自引:1,他引:5       下载免费PDF全文
为提高电动修复技术去除电镀污泥中的重金属(Cu, Pb, Zn , Cr, Ni)的效率,采用污泥预酸化处理及阴极pH值控制处理2种途径进行强化,反应过程中电压为32V,处理时间为7d,结果表明,电镀污泥酸化pH值至4.5时,污泥中重金属的可移动性明显提高了,依次为Cr>Ni>Zn>Cu>Pb;污泥预酸化加阴极pH值控制处理能使电镀污泥中Zn、Ni、Cu和Pb交换态、碳酸盐结合态和有机硫化物态转化为可溶离子态,转化量大小依次为Ni>Zn>Cu>Pb,且该处理Zn、Ni、Cu和Pb的去除率分别达到74.02%、68.38%、39.22%、21.37%;但污泥预酸化及阴极pH值控制处理都不利于Cr的去除,对照处理Cr去除率为77.83%,污泥预酸化处理去除率降为40.65%,污泥预酸化加阴极pH值控制处理降至12.80%.  相似文献   

9.
通过实验方法研究了土壤重金属锌污染的电动修复技术,分析了土壤重金属污染物的迁移和变化特征。实验结果表明在电场作用下土壤中重金属的浓度分布发生明显变化,使得大部分重金属能在电极附近富集而被去除,且土壤的pH值等是影响电动力学修复效果的主要因素。污染物Zn在电场作用下主要是在阴极附近产生富集,迁移方向由阳极向阴极,当实验电压为0.5V/cm时,在阳极附近土壤中锌的去除效率达到74.3%。电动修复中由于两极的氧化还原反应造成电极附近pH值产生明显变化,阳极附近的pH值由开始时的6.7逐渐变小到4.8,而阴极附近则相反,由开始时的6.8逐渐增大到9.2,表明土壤的酸性碱性条件变化明显。此外电动修复过程中电极附近的温度会发生相应的变化。  相似文献   

10.
影响土壤电动修复效率的因素很多,包括土壤类型、污染物性质、电压和电流大小、洗脱液组成和性质、电极材料和结构等.但很少有文献报道不同电极材料对电动修复土壤重金属污染的效率影响,文章采用不同电极材料(石墨、不锈钢和钛板)对尾矿附近的土壤进行电动修复,研究了修复效率及土壤pH随时间的变化情况.当电场强度为1 V/cm,采用石墨电板电动修复48 h总铅的去除效率为77%,不锈钢电极和钛电极的修复效率分别为64%和54%.石墨电极去除效率的提高归因于相比于不锈钢电极和钛电极,石墨电极提供更多的电子传递所需的活性界面.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

17.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

20.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号