首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
ABSTRACT: Nitrogen and P fluxes, transformations and water quality functions of Lake Verret (a coastal Louisiana freshwater lake), were quantified. Ortho-P, total-P, NH4+-N NO3 -N and TKN in surface water collected from streams feeding Lake Verret averaged 104, 340, 59, 185, and 1,060 mg 1?1, respectively. Lake Verret surface water concentrations of ortho-P, total-P, NH+-N, NO3?-N and TKN averaged 66, 191, 36, 66, and 1,292 μg 1?1. The higher N and P concentrations were located in areas of the lake receiving drainage. Nitrification and denitrification processes were significant in removing appreciable inorganic N from the system. In situ denitrification rates determined from acetylene inhibition techniques show the lake removes 560 mg N m?2 yr?1. Laboratory investigations using sediment receiving 450 μg NH+4-N (N-15 labeled) showed that the lake has the potential to remove up to 12.8 g N m?2 yr?1. Equilibrium studies of P exchanges between the sediment and water column established the potential or adsorption capacity of bottom sediment in removing P from the overlying water. Lake Verret sediment was found to adsorb P from the water column at concentrations above 50 μg P 1?1 and the adsorption rates were as great as 300 μg P cm?2 day?1 Using the 137C s dating techniques, approximately 18 g N m?2 yr?1 and 1.2 g P m?2 yr?1 were removed from the system via sedimentation. Presently elevated nutrient levels are found only in the upper reaches of the lake receiving nutrient input from runoff from streams draining adjacent agricultural areas. Nitrification, denitrification, and adsorption processes at the sediment water interface over a relatively short distance reduces the N and P levels in the water column. However, if the lake receives additional nutrient loading, elevated levels will likely cover a larger portion of the lake, further reducing water quality in the lake.  相似文献   

2.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

3.
ABSTRACT: Based on alkalinity data for 596 lakes, 31 percent of Florida's 7300 lakes have < 100 μeq/l alkalinity and are sensitive to acid depostion. More than two-thirds of the lakes in 12 northern Florida counties fit this criterion. Increasing aluminum and decreasing nutrient and chlorophyll a concentrations were observed with decressing pH in a survery of 20 softwater lakes. Maximum measured aluminum values (100-150 μg/L) are below levels asociated with fish toxicity. Factor analysis showed that lake chemistry was related to three principal factors, representing three major processes: watershed weathering, acidification, and nutrient inputs. An acidification index defined as the difference between excess SO42- and excess (Ca2++Mg2+) accounted for 74 percent of the variance in lake pH. Comparison of historical (late 1950a) and present data for pH, alkalinity, and excess SO42- indicated loss of alkalinity (>25 μeq/L) and increase in excess SO42- (16-34 μeq/L) in several softwater lakes.  相似文献   

4.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

5.
The transformation of nitrate was investigated in diverse stream sediments from six areas of Southern Ontario, Canada. Laboratory Experiments conducted with intact 0-5 cm depth sediment cores overlain with aerated 5 mg/l nitrate-N solution reveald considerable nitrate depletion during a six-day period as a resuit of denitrification and nitrate reduction to ammonium. Nitrification and ammonification also occurred simultaneously with nitrate reduction in many stream sediments. Mixed 0-5 cm depth sediments collected from 81 stream sites were used to examine the relationship between microbial nitrate removal and sediment characteristics. Rates of nitrate-N loss from aerated 5 mg/l nitrate-N solutions overlying these sediments ranged between 11 and 171 mg/m2/day for a 24-hour incubation period. Rates of nitrate loss for the 24-hour period exhibited a significant positive correlation (r=0.72) with sediment ammonium content. Organic carbon, total nitrogen and sediment texture also had significant but weak correlations with nitrate loss.  相似文献   

6.
ABSTRACT: This paper illustrates a method of using a hydrologic/water quality model to analyze alternative management practices and recommend best management practices (BMPs) to reduce nitrate-nitrogen (NO3--N) leaching losses. The study area for this research is Tipton, an agriculturally intensive area in southwest Oklahoma. We used Erosion Productivity Impact Calculator (EPIC), a field-scale hydrologic/water quality model, to analyze alternative agricultural management practices. The model was first validated using observed data from a cotton demonstration experiment conducted in the Tipton area. Following that, EPIC was used to simulate fertilizer response curves for cotton and wheat crops under irrigated and dryland conditions. From the fertilizer response functions (N-uptake and N-leaching), we established an optimum fertilizer application rate for each crop. Individual crop performances were then simulated at optimum fertilizer application rates and crop rotations for the Tipton area, which were selected based on three criteria: (a) minimum amount of NO3--N leached, (b) minimum concentration of NO3--N leached, and (c) maximum utilization of NO3--M. Further we illustrate that by considering residual N from alfalfa as a credit to the following crop and crediting NO3--N present in the irrigation water, it is possible to reduce further NO3--N loss without affecting crop yield.  相似文献   

7.
Abstract: Mass (solute) transport in a stream or lake sediment bed has a significant effect on chemical mass balances and microbial activities in the sediment. A “1D vertical dispersion model” is a useful tool to analyze or model solute transfer between river or lake water and a sediment bed. Under a motionless water column, solute transfer into and within the sediment bed is by molecular diffusion. However, surface waves or bed forms create periodic pressure waves along the sediment/water interface, which in turn induce flows in the pores of the sediment bed. The enhancement of solute transport by these interstitial periodic flows in the pores has been incorporated in a 1D depth‐dependent “enhanced dispersion coefficient (DE).” Typically, DE diminishes exponentially with depth in the sediment bed. Relationships have been developed to estimate DE as a function of the characteristics of sediment (particle size, hydraulic conductivity, and porosity) and pressure waves (wave length and height). In this paper, we outline and illustrate the calculation of DE as well as the penetration depth (dp) of the flow effect. Sample applications to illustrate the computational procedure are provided for dissolved oxygen transfer into a stream gravel bed and release of phosphorus from a lake bed. The sensitivity of the results to input parameter values is illustrated, and compared with the errors obtained when interstitial flow is ignored. Maximum values of DE near the sediment surface can be on the order of 1 cm2/s in a stream gravel bed with standing waves, and 0.001 cm2/s in a fine sand lake bed under progressive surface waves, much larger than molecular diffusion coefficients.  相似文献   

8.
ABSTRACT: Investigations were initiated to evaluate the effects of sedimentation on the algal composition, primary productivity rates and chemical nutrient concentrations of a 17 acre recreational impoundment in central Virginia. Comparisons during the winter seasons of 1972–1973 indicated that as a result of sedimentation, from lake front home construction, the total numbers of algal genera in the lake decreased from 24 to 16, productivity as measured by 14CO2 and total extractable chlorophyll decreased two fold, and several important nutrients, i.e. NH4+-N, SiO2 and PO4-P increased significantly.  相似文献   

9.
ABSTRACT: The Watershed Nutrient Transport and Transformation (NTT-Watershed) model is a physically based, energy-driven, multiple land use, distributed model that is capable of simulating water and nutrient transport in a watershed. The topographic features and subsurface properties of the watershed are refined into uniform, homogeneous square grids. The vertical discretization includes vegetation, overland flow, soil water redistribution and groundwater zones. The chemical submodel simulates the nitrogen dynamics in terrestrial and aquatic systems. Three chemical state variables are considered (NO3--, NH4+, and Org-N). The NTT-Watershed model was used to simulate the fate and transport of nitrogen in the Muddy Brook watershed in Connecticut. The model was shown to be capable of capturing the hydrologic and portions of the nitrogen dynamics in the watershed. Watershed planners could use this model in developing strategies of best management practices that could result in maximizing the reductions of nitrogen export from a watershed.  相似文献   

10.
ABSTRACT The movement of fallout 137Cs carried by soil particles was studied as an indicator of erosion and sedimentation in the Allerton watersheds and 4-H Memorial Lake located near Monticello, Illinois. Sediment deposition was greater in the waterway draining from watershed IB than in the waterway from watershed IA. At the average rate of 2.3 cm/yr of sediment deposition in the lake (from 1954 to 1979), there will be a loss of over 2 meters of water depth in the next century. However, there appears to be a decreasing rate of sediment deposition in the 4-H Memorial Lake as a result of improved conservation practices on the watersheds and the increased effectiveness of vegetated waterways and buffers for retaining sediment.  相似文献   

11.
ABSTRACT: We examined the effect of a point source (PS) input on water chemistry and nutrient retention in Spavinaw Creek, Arkansas, during summer baseflows in 1998 and 1999. The nutrient uptake length (Sw) concept was used to quantify the impact of nutrient inputs in the receiving stream. We used an artificial injection upstream of the PS inputs to estimate background S and used the natural decline in nutrient concentrations below the PS to estimate the net nutrient uptake length (Snet). Sw for soluble reactive phosphorus (SRP) in the upstream reference section was O.75 km, but Snet ranged from 9.0 to 31 km for SRP and 3.1 to 12 km for NO3‐N in the reach below the PS. Snet‐SRP was significantly correlated with discharge whereas Snet‐NO3‐N was correlated with the amount of NO3‐N enrichment from the PS. In order to examine specific mechanisms of P retention, loosely exchangeable P and P Sorption Index (PSI) of stream sediments were measured. Sediments exhibited little natural P buffering capacity (low PSI) above the PS, but P loading from the PS further reduced PSI. Loosely exchangeable P in the sediments also increased three fold below the PS, indicating sediments removed some water column P. The physical process of flow and sediment sorption apparently regulated P retention in Spavinaw Creek, whereas the level of N enrichment and possibly biotic uptake and denitrification influenced N retention. Regardless of the mechanism, Spavinaw Creek demonstrated little ability to retain PS‐added nutrients because net nutrient uptake lengths were in the km range.  相似文献   

12.
ABSTRACT: Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3??, and SO42?. Volume-weighted precipitation H+, NH4+, NO3??, and SO42? concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3?? and SO42? concentrations, but the highest stream water NO3?and SO42? concentrations. Among sites, the ratio of mean monthly upstream NO3?? concentration to precipitation NO3?- concentration declined (p < 0.001, R2= 0.47) as precipitation NO3?? concentration increased. The ratio of mean monthly upstream to precipitation SO42? concentration showed no significant relationship to change in precipitation SO42? concentration. Watersheds showed strong retention of inorganic N (> 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha?1 y?1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.  相似文献   

13.
Abstract: To reduce the risk of surface and ground water pollution from nitrate, and in so doing improve the quality of receiving waters, better management options for land application of wastewater must be explored. In order to determine proper and environmentally safe wastewater land application methods, different application scenarios were simulated in this study to determine the fate and transport of nitrogen in sand‐filled field lysimeters. The Leaching Estimation and CHemistry Model for Nutrients (LEACHN) model was used to assess alternative wastewater land application scenarios: applications of low‐, medium‐, or high‐N concentration wastewaters, at different rates (0.06, 0.19, 0.31, or 0.6 m3/m2/day), under continuous or intermittent application. In the simulations, the NO3?‐N levels decreased in the leachate with an increase in wastewater application rates, due to enhanced denitrification in the upper anoxic zone of the soil generated under high flow rates. With low‐N concentrated wastewater, under all tested flow rates, the NO3?‐N levels in the leachate were below the permissible limit. When medium‐N wastewater was applied, the NO3?‐N level in leachate from the highest flow rate was below the permissible limit. Therefore, wastewater with low‐N concentrations, about 10 and 0.5 mg/l NO3?‐N and NH4+‐N, may be continuously applied to soil at all tested flow rates, with minimal nitrate pollution problems. Medium and high‐N concentrated wastewaters increased nitrate levels in the leachate, as compared to their levels in the low‐N concentrated wastewater. It appears that while low‐N wastewater can be safely applied to land without much nitrate leaching problems, the application of medium and high‐N wastewater could pose nitrate pollution problems. The simulation with intermittent application of low‐, medium‐, and high‐N concentrated wastewater at different rates showed a 51‐89% greater reduction in NO3?‐N levels in the leachate, than for continuous application under all tested wastewater N‐levels and flow rates. Also, the levels of NO3?‐N in their leachates were below the permissible limit. Therefore, wastewater with high levels of nitrogenous compounds (up to 54 NO3‐N mg/l) could be treated through an intermittent application to land.  相似文献   

14.
Fenton treatment (Fe2+/H2O2) and different ozone-based Advanced Oxidation Processes (AOPs) (O3, O3/OH and O3/H2O2) were evaluated as pre-treatment of a mature landfill leachate, in order to improve the biodegradability of its recalcitrant organic matter for subsequent biological treatment. With a two-fold diluted leachate, at optimised experimental conditions (initial pH 3, H2O2 to Fe2+ molar ratio of 3, Fe2+ dosage of 4 mmol L−1, and reaction time of 40 min) Fenton treatment removed about 46% of chemical oxygen demand (COD) and increased the five-day biochemical oxygen demand (BOD5) to COD ratio (BOD5/COD) from 0.01 to 0.15. The highest removal efficiency and biodegradability was achieved by ozone at higher pH values, solely or combined with H2O2. These results confirm the enhanced production of hydroxyl radical under such conditions. After the application for 60 min of ozone at 5.6 g O3 h−1, initial pH 7, and 400 mg L−1 of hydrogen peroxide, COD removal efficiency was 72% and BOD5/COD increased from 0.01 to 0.24. An estimation of the operating costs of the AOPs processes investigated revealed that Fe2+/H2O2 was the most economical system (8.2 € m−3 g−1 of COD removed) to treat the landfill leachate. This economic study, however, should be treated with caution since it does not consider the initial investment, prices at plant scale, maintenance and labour costs.  相似文献   

15.
The present study investigates the physical, chemical, and biological characteristics of spring water samples in Shoubak area in the southern Jordan. The samples were collected from May 2004 to May 2005. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), major anions (Cl, NO3, HCO3, SO42−, PO43−, F), and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Cr3+, Ni2+, Zn2+, Pb2+, Cd2+). Water quality for available springs showed high salinity through long period of contact with rocks. The ion concentrations in the water samples were from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. Some springs showed elevated nitrate and sulfate contents which could reflect to percolation from septic tanks, cesspools, and agricultural practices. The infiltration of wastewater from cesspools and septic tanks into groundwater is considered the major source of water pollution. The results showed that there were great variations among the analyzed samples with respect to their physical, chemical and biological parameters, which lie below the maximum permissible levels of the Jordanian and WHO drinking water standards. The results indicate that the trace metals of spring’s water of Shoubak area do not generally pose any health or environmental problems. Factor analysis was used to identify the contributers to water quality. The first factor represents major contribution from anthropogenic activities, while the second one represents major contribution from natural processes.  相似文献   

16.
Rapid response vertical profiling instrumentation was used to document spatial variability and patterns in a small urban lake, Onondaga Lake, associated with multiple drivers. Paired profiles of temperature, specific conductance (SC), turbidity (Tn), fluorometric chlorophyll a (Chlf), and nitrate nitrogen (NO3?) were collected at >30 fixed locations (a “gridding”) weekly, over the spring to fall interval of several years. These gridding data are analyzed (1) to characterize phytoplankton (Chlf) patchiness in the lake's upper waters, (2) to establish the representativeness of a single long‐term site for monitoring lake‐wide conditions, and (3) to resolve spatial patterns of multiple tracers imparted by buoyancy effects of inflows. Multiple buoyancy signatures were resolved, including overflows from less dense inflows, and interflows to metalimnetic depths and underflows to the bottom from the plunging of more dense inputs. Three different metrics had utility as tracers in depicting the buoyancy signatures as follows: (1) SC, for salinity‐enriched tributaries and the more dilute river that receives the lake's outflow, (2) Tn, for the tributaries during runoff events, and (3) NO3?, for the effluent of a domestic waste treatment facility and from the addition of NO3? solution to control methyl mercury. The plunging inflow phenomenon, which frequently prevailed, has important management implications.  相似文献   

17.
ABSTRACT: Iron, added as (Fe-EDTA)-, was found stimulatory to V. spiralis at a concentration of 0.05 ppm. (Fe-EDTA)- had no effect upon growth of V. neotropicalis as measured by changes in dissolved oxygen and dry weight. Results are compared with those derived from similar studies with Hydrilla verticillata and Egeria densa. The implications of lake drawdown and aeration are discussed.  相似文献   

18.
B2O3 was recovered from waste samples such as borogypsum, reactor waste, boronic sludges, waste mud and concentrator waste by leaching processes using distilled water, sulfur dioxide- and carbon dioxide-saturated water. In the leaching processes, temperature, stirring time and solid-to-liquid ratio were taken as parameters. The amount of B2O3 leached increased with increasing temperature and stirring time and it also increased with decreasing solid-to-liquid ratio, but the increase was less than that recorded for the leaching temperature and the stirring time. SO2 saturated water is a more effective leaching solvent than CO2 saturated water for boronic wastes. By the end of the experiments, more than 90% of B2O3 recovery was found as boric acid. In the leaching of boric acid from boronic wastes in water saturated with sulfur dioxide, it was observed that the leaching rate increases with increasing temperature and leaching time. The overall average values of the kinetic parameters were: apparent activation energy (E) 33.2 kJ mol−1, pre-exponential factor (A) 8.2×109 min−1, reaction order (n) 0.97 and rate constant (k) 3.37×103 min−1 for the leaching processes of the boronic wastes.  相似文献   

19.
Lindehoff, Elin, Edna Granéli, and Patricia M. Glibert, 2010. Influence of Prey and Nutritional Status on the Rate of Nitrogen Uptake by Prymnesium parvum (Haptophyte). Journal of the American Water Resources Association (JAWRA) 46(1):121-132. DOI: 10.1111/j.1752-1688.2009.00396.x Abstract: We studied how the specific nitrogen (N) uptake rates of nitrate (NO3), urea, and the amino acids, glutamic acid and glycine, by Prymnesium parvum were affected by (1) the change from N-deficient status to N-sufficient status of the P. parvum cells, (2) presence of prey from a natural Baltic Sea plankton community, and (3) the composition of prey as affected by additions of terrestrial originated dissolved organic matter (DOM) or inorganic nutrients. Nitrogen-deficient P. parvum (16 μM NO3 and 4 μM PO4, molar N:P ratio of 4:1) were mixed with a natural Baltic plankton community and given PO43− and (1) NO3 (control) or (2) high molecular weight DOM, >1 kDa concentrated from sewage effluent (+DOM), in a molar N:P ratio of 9-10:1. With additions of 15N-enriched substrates, rates of N uptake from NO3, urea, and the amino acids glycine and glutamic acid were measured every 24 h for 72 h. Initial N-deficient P. parvum were highly toxic (3.7 ± 0.9 × 10−4 mg Sap equiv/cell) and toxic allelochemicals were released into the medium causing the natural plankton community to lyse. Rates of N uptake differed between the “control” and the “+DOM” treatments over time; total (sum of the N substrates measured) absolute uptake rates (ρcell, fmol N/cell/h) at ambient culture conditions were significantly higher (ANOVA, p < 0.05) in the more toxic “control” treatments compared with the “+DOM” treatments after 48 h. In the “control” treatment, the total ρcell increased significantly (ANOVA, p < 0.01) from time 0 to 48 h, while in the “+DOM” treatment there was no significant increase. Released organic nutrients from the lysed plankton cells may have increased uptake rates of amino acids and urea by P. parvum. All uptake rates declined in all treatments by 72 h. Total dissolved N uptake rates at ambient culture conditions were estimated to make up about 10% of the N P. parvum are potentially capable of ingesting from particulate prey.  相似文献   

20.
Lin, Zhulu, 2011. Estimating Water Budgets and Vertical Leakages for Karst Lakes in North‐Central Florida (United States) Via Hydrological Modeling. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2010.00513.x Abstract: Newnans, Lochloosa, and Orange Lakes are closely hydrologically connected karst lakes located in north‐central Florida, United States. The complex karst hydrology in this region poses a great challenge to the hydrological modeling that is essential to the development of Total Maximum Daily Loads for these lakes. We used a Hydrological Simulation Program – Fortran model coupled with the parallel Parameter ESTimation model calibration and uncertainty analysis software to estimate effectively the hydrological interactions between the lakes and the underlying upper Floridan aquifer and the water budgets for these three lakes. The net results of the lake‐groundwater interactions in Newnans and Orange Lakes are that both lakes recharge the underlying upper Floridan aquifer, with the recharge rate of the latter one magnitude greater than that of the former. However, for Lochloosa Lake, the net lake‐groundwater interaction is that the lake gains water from groundwater in a significant amount, approximately 40% of its total terrestrial water input. The annual average vertical leakages estimated for Newnans, Lochloosa, and Orange Lakes are 6.0 × 106, ?8.9 × 106, and 44.4 × 106 m3, respectively. The average vertical hydraulic conductance (Kv/b) of the units between a lake bottom and the underlying upper Floridan aquifer in this region are also estimated to be from 1.26 × 10?4 to 1.01 × 10?3 day?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号