首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of atmospheric nitrogen deposition on the species richness of acid grasslands was investigated by combining data from a large Danish monitoring program with a large European data set, where a significant non-linear negative effect of nitrogen deposition had been demonstrated (Stevens et al., 2010). The nitrogen deposition range in Denmark is relatively small and when only considering the Danish data a non-significant decrease in the species richness with nitrogen deposition was observed. However, when both data sets were combined, then the conclusion of the European survey was further corroborated by the results of the Danish monitoring. Furthermore, by combining the two data sets a more comprehensive picture of the threats to the biodiversity of acid grasslands emerge; i.e., species richness in remnant patches of acid grassland in intensively cultivated agricultural landscapes is under influence not only from nitrogen deposition, but also from current and historical land use.  相似文献   

2.
We determined the concentrations of 35 PCNs, 12 PCBs, and 20 PAHs in 49 urban topsoils under different land use (house garden, roadside grassland, alluvial grassland, park areas, industrial sites, agricultural sites) and in nine rural topsoils. The sums of concentrations of 35 PCNs (sigma35 PCNs) were <0.1-15.4 microg kg(-1) in urban soils and <0.1 to 0.82 microg kg(-1) in rural soils. The PCN, PCB, and PAH concentrations were highest at industrial sites and in house gardens. While rural soils receive PCNs, PCBs, and PAHs by common atmospheric deposition, there are site-specific sources of PCNs, PCBs, and PAHs for urban soils such as deposition of contaminated technogenic materials. The PCN, PCB, and PAH concentrations decreased from the central urban to the rural area. In the same order the contribution of lower chlorinated PCNs and PCBs increased because they are more volatile and subject to increased atmospheric transport. The PCNs 52+60, and 73 were more abundant in soil samples than in Halowax mixtures, indicating that combustion contributed to the PCN contamination of the soils.  相似文献   

3.
A survey of 153 acid grasslands from the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is changing plant species composition and soil and plant-tissue chemistry. Across the deposition gradient (2-44 kg N ha−1 yr−1) grass richness as a proportion of total species richness increased whereas forb richness decreased. Soil C:N ratio increased, but soil extractable nitrate and ammonium concentrations did not show any relationship with nitrogen deposition. The above-ground tissue nitrogen contents of three plant species were examined: Agrostis capillaris (grass), Galium saxatile (forb) and Rhytidiadelphus squarrosus (bryophyte). The tissue nitrogen content of neither vascular plant species showed any relationship with nitrogen deposition, but there was a weak positive relationship between R. squarrosus nitrogen content and nitrogen deposition. None of the species showed strong relationships between above-ground tissue N:P or C:N and nitrogen deposition, indicating that they are not good indicators of deposition rate.  相似文献   

4.
Phosphomonoesterase activities were determined monthly during a seasonal cycle in three characteristic soil types of the English uplands that have been subject to long-term atmospheric nitrogen deposition. Activities (micromol para-nitrophenol g(-1) soil dry wt. h(-1)) ranged between 83.9 and 307 in a blanket peat (total carbon 318 mg g(-1). pH 3.9), 45.2-86.4 in an acid organic grassland soil (total carbon 354 mg g(-1), pH 3.7) and 10.4-21.1 in a calcareous grassland soil (total carbon 140 mg g(-1) pH 7.3). These are amongst the highest reported soil phosphomonoesterase activities and confirm the strong biological phosphorus limitation in this environment.  相似文献   

5.
The model MAGIC (Model of Acidification of Groundwater In Catchments) has been applied to the Beacon Hill site, near Loughborough in Central England. This site is heavily impacted by wet and dry deposition of oxides of sulphur and nitrogen. The high acid inputs have caused soil acidification and acid stream waters. Long term simulations suggest that there has been a major decline in alkalinity and pH over the past 50 years. Despite recent reductions in deposition levels, soils and streams are predicted to continue to acidify in the future. For this heavily impacted site, deposition must be reduced by 80-90% to reverse the acidification trend and allow recovery of soil and stream waters.  相似文献   

6.
Recent studies have demonstrated that natural abundance (15)N can be a useful tool for assessing nitrogen saturation, because as nitrification and nitrate loss increase, delta(15)N of foliage and soil also increases. We measured foliar delta(15)N at 11 high-elevation spruce-fir stands along an N deposition gradient in 1987-1988 and at seven paired northern hardwood and spruce-fir stands in 1999. In 1999, foliar delta(15)N increased from -5.2 to -0.7 per thousand with increasing N deposition from Maine to NY. Foliar delta(15)N decreased between 1987-1988 and 1999, while foliar %N increased and foliar C:N decreased at most sites. Foliar delta(15)N was strongly correlated with N deposition, and was also positively correlated with net nitrification potential and negatively correlated with soil C:N ratio. Although the increase in foliar %N is consistent with a progression towards N saturation, other results of this study suggest that, in 1999, these stands were further from N saturation than in 1987-1988.  相似文献   

7.
The objectives of this study were to compare changes in atmospheric deposition rates for water soluble Zn, Cu and Mn associated with a doubling of the generating capacity of a fossilfuel power plant located in southern Maryland with concentrations of extractable metals in soils and In corn and soybean foliage.

Three atmospheric deposition samples were collected monthly during each summer from 12 research and monitoring sites located 1.6, 4.8 and 9.6 km distances from the Chalk Point Generating Station for two years before and after the June 1975 expansion of generation capacity from 660 to 1320 MW. Crop leaf samples were collected at flowering, and 0-15 cm depth soil samples were collected from research plots each May.

Averaged over monitoring sites and plant operational periods, respectively, significant decreases were found in atmospheric deposition rates for Zn and Mn from pre- to post-plant expansion and with increased distances. The Cu deposition rates remained unchanged from pre- to post-expansion; however, a trend for decreased rates with distance was observed.

Significant differences were found in the levels of soil extractable Zn, Cu and Mn among the 12 sites and with distance from the power plant. Also, combined over sites, significantly higher levels of extractable Zn and Mn were found during post-expansion which were attributed to general increases in soil acidity found in all soil research sites.

Significant increases in foliar Cu and significant decreases in foliar Mn concentrations were found in both crops from pre- to post-expansion. Leaf Zn concentrations declined in soybeans but remained unchanged in corn after plant expansion. Leaf Mn levels were highest in both crops at 1.6 km compared to more distance sites; however, foliar Zn and Cu concentrations In both crops were similar across distances from the power plant.

The increase in soil extractable Zn and Mn associated with the decreases in soil pH were typically 100X larger than the recorded decreases in water soluble Zn and Mn deposition associated with power plant expansion. The observed changes in rates of metal deposition would be expected to have only minimal effects on the metal nutrition of the crops; however, the quantities of Zn and Cu being deposited would likely prevent deficiencies from occurring on the Atlantic Coastal Plain soils.  相似文献   

8.
The remediation of copper-contaminated soils by aided phytostabilisation in 16 field plots at a wood preservation site was investigated. The mobility and bioavailability of four potentially toxic trace elements (PTTE), i.e., Cu, Zn, Cr, and As, were investigated in these soils 4 years after the incorporation of compost (OM, 5 % w/w) and dolomite limestone (DL, 0.2 % w/w), singly and in combination (OMDL), and the transplantation of mycorrhizal poplar and willows. Topsoil samples were collected in all field plots and potted in the laboratory. Total PTTE concentrations were determined in soil pore water (SPW) collected by Rhizon soil moisture samplers. Soil exposure intensity was assessed by Chelex100-DGT (diffusive gradient in thin films) probes. The PTTE phytoavailability was characterized by growing dwarf beans on potted soils and analyzing their foliar PTTE concentrations. OM and DL, singly and in combination (OMDL), were effective to decrease foliar Cu, Cr, Zn, and As concentrations of beans, the lowest values being numerically for the OM plants. The soil treatments did not reduce the Cu and Zn mineral masses of the bean primary leaves, but those of Cr and As decreased for the OM and DL plants. The Cu concentration in SPW was increased in the OM soil and remained unchanged in the DL and OMDL soils. The available Cu measured by DGT used to assess the soil exposure intensity correlated with the foliar Cu concentration. The Zn concentrations in SPW were reduced in the DL soil. All amendments increased As in the SPW. Based on DGT data, Cu availability was reduced in both OM and OMDL soils, while DL was the most effective to decrease soil Zn availability.  相似文献   

9.
We investigated the effects of different ratios of reduced (NH4+) versus oxidised (NO3(-)) nitrogen in deposition on heathland and species-rich grassland vegetation at high nitrogen deposition levels in large mesocosms filled with nutrient-poor soils to which different NH4+/NO3(-) ratios were applied. The response of the forbs, Antennaria dioica, Arnica montana, Gentiana pneumonanthe, Thymus serpyllum, the grasses Danthonia decumbens, Deschampsia flexuosa, Nardus stricta and the shrub Calluna vulgaris was recorded. The forb A. dioica and the grass D.decumbens preferred low NH4+/NO3(-) ratios and were characterised by a negative correlation between NH4+/NO3(-) ratios and biomass and survival, whereas the grasses N. stricta and D. flexuosa showed no correlation with NH4+/NO3(-) ratios. Lime addition eliminated the negative effects of high NH4+ concentrations in deposition for A. dioica and the grass D. decumbens. The implications of these findings for heathland vegetations are discussed.  相似文献   

10.
The deposition of high levels of reactive nitrogen (N) and sulphur (S), or the legacy of that deposition, remain among the world's most important environmental problems. Although regional impacts of acid deposition in aquatic ecosystems have been well documented, quantitative evidence of wide-scale impacts on terrestrial ecosystems is not common. In this study we analysed surface and subsoil chemistry of 68 acid grassland sites across the UK along a gradient of acid deposition, and statistically related the concentrations of exchangeable soil metals (1 M KCl extraction) to a range of potential drivers. The deposition of N, S or acid deposition was the primary correlate for 8 of 13 exchangeable metals measured in the topsoil and 5 of 14 exchangeable metals in the subsoil. In particular, exchangeable aluminium and lead both show increased levels above a soil pH threshold of about 4.5, strongly related to the deposition flux of acid compounds.  相似文献   

11.
Regular applications of ammonium nitrate (35-140 kg N ha(-1) year(-1)) and ammonium sulphate (140 kg N ha(-1) year(-1)) to areas of acidic and calcareous grassland in the Derbyshire Peak District over a period of 6 years, have resulted in significant losses in both overall plant cover, and the abundance of individual species, associated with clear and dose-related increases in shoot nitrogen content. No overall growth response to nitrogen treatment was seen at any stage in the experiment. Phosphorus additions to the calcareous plots did however lead to significant increases in plant cover and total biomass, indicative of phosphorus limitation in this system. Clear and dose-related increases in soil nitrogen mineralization rates were also obtained, consistent with marked effects of the nitrogen additions on soil processes. High nitrification rates were seen on the calcareous plots, and this process was associated with significant acidification of the 140 kg N ha(-1) year(-1) treatments.  相似文献   

12.
The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.  相似文献   

13.
The effects of wet-deposited nitrogen on soil acidification and the health of Norway spruce were investigated in a pot experiment using an open-air spray/drip system. Nitrogen was applied as ammonium ((NH(4))(2)SO(4)) or nitrate (HNO(3)/NaNO(3)) in simulated rain to either the soil or the foliage. Symptoms of forest decline as observed in the field were not reproduced, and there was no evidence of direct toxicity. Treatments did, however, have significant effects on tree nutrition. Both NH(+)(4) and NO(-)(3) treatment applied to the foliage lowered foliar K concentrations. NH(+)(4) to a greater extent. Soil-applied NH(+)(4) reduced foliar Mg concentrations and increased foliar Al and Fe. Soil-applied NO(-)(3) significantly reduced foliar P concentrations, and at high doses prevented the alleviation of P deficiency by fertiliser. These effects could be important in some field situations. Ammonium deposition is predicted to be more damaging than nitrate deposition, although the latter may be critical for forests where P status is marginal, such as in parts of the British uplands.  相似文献   

14.
Atmospheric deposition of fixed nitrogen as nitrate and ammonium in rain and by dry deposition of nitrogen dioxide, nitric acid and ammonia has increased throughout Europe during the last two decades, from 2-6 kg N ha(-1) year(-1) to 15-60 kg N ha(-1) year(-1). The nitrogen contents of bryophytes and the ericaceous shrub Calluna vulgaris have been measured at a range of sites, with the objective of showing the degree to which nitrogen deposition is reflected in foliar plant nitrogen. Tissue nitrogen concentrations of herbarium bryophyte samples and current samples of the same species collected from the same sites were compared. No significant change in tissue nitrogen was recorded at a remote site in north-west Scotland where nitrogen inputs are small (< 6 kg N ha(-1) year(-1)). Significant increases in tissue N occurred at four sites ranging from 38% in central Scotland to 63% in Cumbria where nitrogen inputs range from 15 to 30 kg N ha(-1) year(-1). The relationships found between the estimated input of atmospheric nitrogen and the tissue nitrogen content of the selected bryophytes and Calluna at the sites investigated were found to be generally linear and fitted the form N(tissue) = 0.62 + 0.022 N(dep) for bryophytes and N(tissue) = 0.83 + 0.045 N(dep) for Calluna. There was thus an increase in total tissue nitrogen of 0.02 mg g(-1) dry weight for bryophytes and 0.045 mg g(-1) dry weight for Calluna for an increase in atmospheric nitrogen deposition of 1 kg ha(-1) year(-1). The lowest concentrations were found in north-west Scotland and the highest in Cumbria and the Breckland heaths of East Anglia, both areas of high atmospheric nitrogen deposition (30-40 kg N ha(-1) year(-1)). The implications of increased tissue nitrogen content in terms of vegetation change are discussed. Changes in atmospheric nitrogen deposition with time were also examined using measured values and values inferred from tissue nitrogen content of mosses. The rate of increase in nitrogen deposition is not linear over the 90-year period, and the increases were negligible over the period 1880-1915. However, during the period 1950 to 1990 the data suggest an increase in nitrogen deposition of 2 kg N ha(-1) every 10 years.  相似文献   

15.
Root length of naturally grown young beech trees (Fagus sylvatica L.) was investigated in 26 forest plots of differing base saturation and nitrogen deposition. The relative length of finest roots (<0.25 mm) was found to decrease in soils with low base saturation. A similar reduction of finest roots in plots with high nitrogen deposition was masked by the effect of base saturation. The formation of adventitious roots was enhanced in acidic soils. The analysis of 128 soil profiles for fine roots of all species present in stands of either Fagus sylvatica L., Picea abies [Karst.] L. or both showed a decreased rooting depth in soils with < or =20% base saturation and in hydromorphic soils. For base rich, well drained soils an average rooting depth of 108 cm was found. This decreased by 28 cm on acidic, well drained soils. The results suggest an effect of the current soil acidification in Switzerland and possibly also of nitrogen deposition on the fine root systems of forest trees.  相似文献   

16.
A global assessment of the impact of the anthropogenic perturbation of the nitrogen and sulfur cycles on forest ecosystems is carried out for both the present-day [1980-1990] and for a projection into the future [2040-2050] under a scenario of economic development which represents a medium path of development according to expert guess [IPCC IS92a]. Results show that forest soils will receive considerably increasing loads of nitrogen and acid deposition and that deposition patterns are likely to change. The regions which are most prone to depletion of soils buffering capacity and supercritical nitrogen deposition are identified in the subtropical and tropical regions of South America and Southeast Asia apart from the well known 'hotspots' North-Eastern America and Central Europe. The forest areas likely to meet these two risks are still a minor fraction of the global forest ecosystems, though. But the bias between eutrophication and acidification will become greater and an enhanced growth triggered by the fertilizing effects of increasing nitrogen input cannot be balanced by the forest soils nutrient pools. Results show increasing loads into forest ecosystems which are likely to account for 46% higher acid loads and 36% higher nitrogen loads in relation to the 1980-1990 situation. Global background deposition of up to 5 kg N ha-1 a-1 will be exceeded at more than 25% of global forest ecosystems and at more than 50% of forest ecosystems on acid sensitive soils. More than 33% of forest ecosystems on acid sensitive soils will receive acid loads which exceeds their buffering capacity. About 25% of forest areas with exceeded acid loads will receive critical nitrogen loads.  相似文献   

17.
During the last 50 years nitrate concentrations in Buttermere and Wastwater (Cumbria, UK) have risen significantly, by 70 and 100%, respectively. By estimating contemporary nitrate fluxes in the lakes' catchments and in sub-catchments and comparing them with the fractional areas of different soil types, it is deduced that the surface water nitrate is derived almost entirely from organic-rich ranker soils that have a limited ability to retain atmospherically-deposited nitrogen. Little or no nitrate leaches from the other major soil type, a brown podzol, despite it having a lower C:N ratio (12.0 g g(-1)) than the ranker (17.0 g g(-1)), nor is there much contribution from the small areas of improved (chemically fertilised) grassland within the catchments. Although some nitrate leaching is occurring, total N losses are appreciably smaller than atmospheric inputs, so the catchment soils are currently accumulating between 3 and 4 g N m(-2) a(-1).  相似文献   

18.
Evidence from an international survey in the Atlantic biogeographic region of Europe indicates that chronic nitrogen deposition is reducing plant species richness in acid grasslands. Across the deposition gradient in this region (2-44 kg N ha−1 yr−1) species richness showed a curvilinear response, with greatest reductions in species richness when deposition increased from low levels. This has important implications for conservation policies, suggesting that to protect the most sensitive grasslands resources should be focussed where deposition is currently low. Soil pH is also an important driver of species richness indicating that the acidifying effect of nitrogen deposition may be contributing to species richness reductions. The results of this survey suggest that the impacts of nitrogen deposition can be observed over a large geographical range.  相似文献   

19.
To assess the impacts of the decline in sulphur (S) deposition over the past 20 years in Ontario, soil chemistry and sugar maple (Acer saccharum Marsh) foliar chemistry were measured at 17 sites in south and central Ontario in 2005 and compared with archived samples collected in 1986. Foliar S concentrations were lower in 2005, reflecting the decline in S deposition whereas foliar N remained unchanged, reflecting the lack of change in N deposition in Ontario. Mineral soil pH, exchangeable base cations were lower in 2005 whereas total S, N and cation exchange capacity (CEC) were unchanged. Foliar concentrations of Ca were positively related to soil Ca levels in the A-horizon and were lower in 2005. Despite evidence of increasing soil acidity and losses of calcium, foliar base cation concentrations at most sites were adequate for sugar maple and forest health in terms of canopy appearance (Decline Index) improved.  相似文献   

20.
In soils of the Moscow region, we examined PCB concentrations in bulk samples and aggregate fractions. Topsoils under grassland and forest at five locations along a southeast-bound transect from Moscow and at a northeastern background location (grassland only) were analysed. We collected aggregates >1 cm and fractionated them into interior and exterior portions and also analysed the remaining soil without the aggregates >1 cm. The concentrations of the sum of 17 PCBs (sigma17PCBs) in 35 bulk soil samples ranged from 3.1 to 42 microg kg(-1). This was 48-61% of the sigma33PCBs determined in 23 selected samples. The congeners 138(+158), 101 and 52 were most abundant. All PCB concentrations and the degree of chlorination declined with increasing distance from Moscow. The PCBs were accumulated in the aggregate exterior (on average 146% of the sigma17PCBs in bulk soil). We conclude that the ecotoxicological risk of PCBs in soils may not be properly assessed with the conventional bulk soil analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号