首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Potent estrogenic hormones are consistently detected in the environment at low concentration, yet these chemicals are strongly sorbed to soil and are labile. The objective of this research was to improve the understanding of the processes of sorption, mobility, and transformation for estrogens in natural soils, and their interaction. Equilibrium and kinetic batch sorption experiments, and a long-term column study were used to study the fate and transport of 17beta-estradiol and its primary metabolite, estrone, in natural soil. Kinetic and equilibrium batch experiments were done using radiolabeled 17beta-estradiol and estrone. At the concentrations used, it appeared that equilibrium sorption for both estrogens was achieved between 5 and 24 h, and that the equilibrium sorption isotherms were linear. The log K(oc) values for 17beta-estradiol (2.94) and estrone (2.99) were consistent with previously reported values. Additionally, it was found that there was rate-limited sorption for both 17beta-estradiol (0.178 h(-1)) and estrone (0.210 h(-1)). An approximately 42 h long, steady-flow, saturated column experiment was used to study the transport of radiolabeled 17beta-estradiol, which was applied in a 5.00 mg L(-1) solution pulse for 44 pore volumes. 17beta-estradiol and estrone were the predominant compounds detected in the effluent. The effluent breakthrough curves were asymmetric and the transport modeling indicated that sorption was rate-limited. Sorption rates and distributions of the estrogens were in agreement between column and batch experiments. This research can provide a better link between the laboratory results and observations in the natural environment.  相似文献   

2.
Avermectins are widely used to treat livestock for parasite infections. Ivermectin, which belongs to the group of avermectins, is particularly hazardous to the environment, especially to crustaceans and to soil-dwelling organisms. Sorption is one of the key factors controlling transport and bioavailability. Therefore, batch studies have been conducted to characterize the sorption and desorption behavior of ivermectin in three European soils (Madrid, York, and artificial soil). The solid-water distribution coefficient (K(d)) for ivermectin sorption to the tested soils were between 57 and 396 L kg(-1) (determined at 0.1 microg g(-1)), while the organic carbon-normalized sorption coefficients (K(oc)) ranged from 4.00 x 10(3) to 2.58 x 10(4) L kg(-1). The Freundlich sorption coefficient (K(F)) was 396 (after 48 h) for the artificial soil over a concentration range of 0.1 to 50 microg g(-1), with regression constants indicating a concentration-dependent sorption. The obtained data and data in the literature are inconclusive with regard to whether hydrophobic partitioning or more specific interactions are involved in sorption of avermectins. For abamectin, hydrophobic partitioning seems to be one of the dominant types of binding, while hydrophobicity is less important for ivermectin, which is probably due to the lower lipophilicity of the molecule. Furthermore, the presence of cations such as Ca(2+) leads to decreasing sorption. Thus, it is presumed that ivermectin binds to soil by formation of complexes with immobile, inorganic soil matter. In contrast to abamectin, hysteresis could be excluded for ivermectin in the studied soils for the evaluation of sorption and desorption. The sorption mechanism is highly dependent on physicochemical properties of the avermectin.  相似文献   

3.
Land-applied domestic animal wastes contain appreciable amounts of 17beta-estradiol (henceforth, estradiol) and testosterone. These sex hormones may be transported through soil to groundwater and streams, where they may adversely affect the environment. Previous column transport studies with these hormones used repacked soil and did not consider preferential flow. We, therefore, determined the sorption and transport characteristics of estradiol and testosterone in undisturbed soil columns (15-cm i.d. by 32-cm height). In the sorption experiment, isotherms for estradiol and testosterone were nonlinear with Freundlich exponents (n) less than one. Sorption of both hormones decreased with soil depth, and estradiol sorbed more strongly than testosterone. Average estradiol Freundlich sorption coefficients (K(f)) values were 36.9 microg(1 - n) mL(n) g(-1) for the 0- to 10-cm soil depth and 25.7 microg(1 - n) mL(n) g(-1) for the 20- to 30-cm soil depth. Average testosterone K(f) values were 26.7 microg(1 - n) mL(n) g(-1) for the 0- to 10-cm soil depth and 14.0 microg(1 - n) mL(n) g(-1) for the 20- to 30-cm soil depth. In the transport experiment, 27% of the estradiol and 42% of the testosterone leached through the soil columns. Approximately 50% of the remaining soil-bound hormones were sorbed in the top 10 cm of soil. In almost all instances, breakthrough concentrations of estradiol, testosterone, and a chloride tracer peaked simultaneously. Simultaneous breakthrough and HYDRUS-1D transport parameters indicated both chemical and physical nonequilibrium processes affected hormone transport. This suggests hormones placed on soil surfaces may contaminate groundwater under conditions of preferential flow.  相似文献   

4.
A new surface molecular imprinting adsorbent (SMIA) was used in an expanded bed. The expansion ratio and adsorption performance were studied at different volumetric rates, inlet concentrations, and pH values. A model based on the Adams-Bohart adsorption model of breakthrough curves was established. The predicted curves had good agreement with the experimental curves. The breakthrough time (T(1/2)) decreased with increasing inlet concentration when the outlet concentration was half the initial concentration (C/C(0)=0.5). The inlet concentration had little effect on the adsorption rate constant (k(1)) value when the initial concentration (C(0)) was above 150 mg/L. However, T(1/2) values increased with increasing initial pH of the inlet solution, and the k(1) value decreased due to the competition between H(+) and Ni(2+).  相似文献   

5.
Batch sorption and column breakthrough studies were conducted to investigate the potential of layered double hydroxides (LDHs) to remove bacteriophage MS2 from contaminated waters. All four of the LDHs evaluated in this study had very high retention capacities for MS2. Sorption results showed that MS2 could be completely removed from 5.2 x 10(2) plaque-forming units (pfu)/mL solution by Mg-Al LDH 2 (i.e., 2:1 Mg to Al ratio LDH), with the highest sorption capacity observed in this study of 1.51 x 10(10) pfu/g. Attachment of MS2 to LDHs was a rapid process and reached quasi-equilibrium after a 1-h reaction time. Within the pH range studied (pH 4-9), Mg-Al LDH 2 showed high sorption potential for MS2 at all pH values but sorption decreased slightly with increasing solution pH. Background solution anions influenced virus sorption, with SO4(2-) and HPO4(2-) decreasing sorption significantly whereas the presence of NO3- had little effect on the attachment of MS2 to Mg-Al LDH 2. The addition of another virus (phiX174) only caused a slight decrease in the retention of MS2 by Mg-Al LDH 2, suggesting that there was insignificant competitive sorption between MS2 and phiX174 on LDH surfaces. Results from column experiments indicate that there was no MS2 breakthrough from columns packed with Mg-Al LDH 2-coated sand, suggesting complete MS2 retention at the virus concentration tested. The high mass recovery by beef extract solution revealed that the removal of viruses by the LDH was due to sorption of MS2 to LDH surfaces, rather than inactivation.  相似文献   

6.
Vegetated buffers strips typically have limited ability to reduce delivery of dissolved phosphorus (DP) from agricultural fields to surface waters. A field study was conducted to evaluate the ability of buffer strips enhanced with drinking water treatment residuals (WTRs) to control runoff P losses from surface-applied biosolids characterized by high water-extractable P (4 g kg(-)(1)). Simulated rainfall (62.4 mm h(-1)) was applied to grassed plots (3 m x 10.7 m including a 2.67 m downslope buffer) surface-amended with biosolids at 102 kg P ha(-1) until 30 min of runoff was collected. With buffer strips top-dressed with WTR (20 Mg ha(-1)), runoff total P (TP = 2.5 mg L(-1)) and total DP (TDP = 1.9 mg L(-1)) were not statistically lower (alpha = 0.05) compared to plots with unamended grass buffers (TP = 2.7 mg L(-1); TDP = 2.6 mg L(-1)). Although the applied WTR had excess capacity (Langmuir P maxima of 25 g P kg(-1)) to sorb all runoff P, kinetic experiments suggest that sheet flow travel time across the buffers ( approximately 30 s) was insufficient for significant P reduction. Effective interception of dissolved P in runoff water by WTR-enhanced buffer strips requires rapid P sorption kinetics and hydrologic flow behavior ensuring sufficient runoff residence time and WTR contact in the buffer. Substantial phosphate-adsorbent contact opportunity may be more easily achieved by incorporating WTRs into P-enriched soils or blending WTRs with applied P sources.  相似文献   

7.
Ground water and aquifer samples from a site contaminated by hexachlorocyclohexanes (HCHs; C(6)H(6)Cl(6)) were exposed to nanoscale iron particles to evaluate the technology as a potential remediation method. The summed concentration of the HCH isomers in ground water was approximately 5.16 micromol L(-1) (1500 microg L(-1)). Batch experiments with 2.2 to 27.0 g L(-1) iron nanoparticles showed that more than 95% of the HCHs were removed from solution within 48 h. Using a pseudo first-order kinetics model, the HCH isomers were removed in accordance with the trend gamma congruent with alpha > beta > delta. This seems to be correlated with the orientation (axial vs. equatorial) of the chlorine atoms lost in the dihaloelimination steps. Although the reactivity of the HCH isomers has been investigated in the classical organic chemistry literature, the present study was the first in the environmental remediation arena. The rate of removal is directly correlated to the number of axial chlorines. The observed rate constant varied from 0.04 to 0.65 h(-1), and the rate constant normalized to the iron surface area concentration ranged from 5.4 x 10(-4) to 8.8 x 10(-4) L m(-2) h(-1). Post-test extractions of the reactor contents detected little HCH remaining in solution or on the iron surfaces, reinforcing the contention that reaction rather than sorption was the operative mechanism for the HCH removal. Together with previously published work on a wide variety of chlorinated organic solvents, this work further demonstrates the potential of zerovalent iron nanoparticles for treatment and remediation of persistent organic pollutants.  相似文献   

8.
Two environmental aspects associated with land application of poultry litter that have not been comprehensively evaluated are (i) the competition of dissolved organic matter (DOM) and P for soil sorption sites, and (ii) the sorption of dissolved organic nitrogen (DON) relative to inorganic nitrogen species (e.g., NO(3)(-) and NH(4)(+)) and dissolved organic carbon (DOC). The competition between DOM and P for sorption sites has often been assumed to increase the amount of P available for plant growth; however, elevating DOM concentrations may also increase P available for transport to water resources. Batch sorption experiments were conducted to (i) evaluate soil properties governing P sorption to benchmark soils of Southwestern Missouri, (ii) elucidate the impact of poultry litter-derived DOM on P sorption, and (iii) investigate DON retention relative to inorganic N species and DOC. Soils were reacted for 24 h with inorganic P (0-60 mg L(-1)) in the presence and absence of DOM (145 mg C L(-1)) using a background electrolyte solution comparable to DOM extracts (I = 10.8 mmol L(-1); pH 7.7). Soil P sorption was positively correlated with metal oxide (r(2) = 0.70) and clay content (r(2) = 0.79) and negatively correlated with Bray-1 extractable P (r(2) = 0.79). Poultry litter-derived DOM had no significant negative impact on P sorption. Dissolved organic nitrogen was preferentially removed from solution relative to (NO(3)(-)-N + NO(2)(-)-N), NH(4)(+)-N, and DOC. This research indicates that poultry litter-derived DOM is not likely to enhance inorganic P transport which contradicts the assumption that DOM released from organic wastes increases plant-available P when organic amendments and fertilizer P are co-applied. Additionally, this work demonstrates the need to further evaluate the fate and transport of DON in agroecosystem soils receiving poultry litter applications.  相似文献   

9.
Three low-volume mini-sprinklers were tested for their efficacy to strip trichloroethylene (TCE) and tetrachloroethylene (PCE) from water. Deionized water spiked with TCE and PCE was pumped for approximately 1 h at 0.19 to 0.21 MPa (28 to 30 lb in(-2)) through a mini-sprinkler supported on top of a 1.8-m-tall riser. Water was collected in collection vessels at 0.61 and 1.22 m above the ground on support columns that were spaced at 0.61-m intervals from the riser base, and samples were composited per height and distance from the riser. Overall, air-stripping reduced dissolved concentrations of TCE and PCE by 99.1 to 100 and 96.9 to 100%, respectively, from mean influent dissolved concentrations of 466 to 1675 microg L(-1) TCE and 206 to 940 microg L(-1) PCE. In terms of mass removed, the mini-sprinklers removed TCE and PCE at a rate of approximately 1400 to 1700 and 700 to 900 microg L(-1), respectively, over a 1-h test period. Mini-sprinklers offer the advantages of (i) easy setup in series that can be used on practically any terrain; (ii) operation over a long period of time that does not threaten aquifer depletion; (iii) use in small or confined aquifers in which the capacity is too low to support large irrigation or purging systems; and (iv) use in forests in which the small, low-impact droplets of the mini-sprinklers do not damage bark and in which trees can help manage (via evapotranspiration) excess waste water.  相似文献   

10.
Solute concentration and soluble dye studies inferring that preferential flow accelerates field-scale contaminant transport are common but flux measurements quantifying its impact are essentially nonexistent. A tile-drain facility was used to determine the influence of matrix and preferential flow processes on the flux of mobile tracers subjected to different irrigation regimes (4.4 and 0.89 mm h(-1)) in a silt loam soil. After tile outflow reached steady state either bromide (Br; 280 kg ha(-1)) or pentafluorobenzoic acid (PFBA; 121 kg ha(-1)) was applied through the irrigation system inside a shed (3.5 x 24 m). Bromide fluxes were monitored at an irrigation rate of 4.4 mm h(-1) while PFBA fluxes were monitored at an irrigation rate of 0.89 mm h(-1). At 4.4 mm h(-1) nearly one-third of the surface-applied Br was recovered in the tile line after only 124 mm of irrigation and was poorly fit by the one-dimensional convective-dispersive equation (CDE). On the other hand, the one-dimensional CDE fit the main PFBA breakthrough pattern almost perfectly, suggesting the PFBA transport was dominated by matrix flow. Furthermore, after 225 mm of water had been applied, less than 2% of the applied PFBA had been leached through the soil compared with more than 59% of the applied Br. This study demonstrates that the methodology of applying a narrow strip of chemical to a tile drain facility is appropriate for quantifying chemical fluxes at the small-field scale and also suggests that there may be a critical input flux whereby preferential flow is initiated.  相似文献   

11.
Chromium has become an important soil contaminant at many sites, and facilitating in situ reduction of toxic Cr(VI) to nontoxic Cr(III) is becoming an attractive remediation strategy. Acceleration of Cr(VI) reduction in soils by addition of organic carbon was tested in columns pretreated with solutions containing 1000 and 10 000 mg L(-1) Cr(VI) to evaluate potential in situ remediation of highly contaminated soils. Solutions containing 0,800, or 4000 mg L(-1) organic carbon in the form of tryptic soy broth or lactate were diffused into the Cr(VI)-contaminated soils. Changes in Cr oxidation state were monitored through periodic micro-XANES analyses of soil columns. Effective first-order reduction rate constants ranged from 1.4 x 10(-8) to 1.5 x 10(-7) s(-1), with higher values obtained for lower levels of initial Cr(VI) and higher levels of organic carbon. Comparisons with sterile soils showed that microbially dependent processes were largely responsible for Cr(VI) reduction, except in the soils initially exposed to 10 000 mg L(-1) Cr(VI) solutions that receive little (800 mg L(-1)) or no organic carbon. However, the microbial populations (< or = 2.1 x 10(5) g(-1)) in the viable soils are probably too low for direct enzymatic Cr(VI) reduction to be important. Thus, synergistic effects sustained in whole soil systems may have accounted for most of the observed reduction. These results show that acceleration of in situ Cr(VI) reduction with addition of organic carbon is possible in even heavily contaminated soils and suggest that microbially dependent reduction pathways can be dominant.  相似文献   

12.
Fractures in till may provide pathways for agricultural chemicals to contaminate aquifers and surface waters. This study was conducted to quantify the influence of fractures on solute fate and transport using three conservative and two nonconservative tracers. The conservative tracers were potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid disodium salt (PIPES); the nonconservative tracers were nitrate and atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine]. Three sites in Iowa were investigated, including four late Wisconsinan and Pre-Illinoian tills. Laboratory tracer experiments were conducted using eight large (0.4-0.45 m long by 0.43 m in diameter), undisturbed columns of till collected from depths of 1 to 28 m. The tills were densely fractured, with fracture spacing ranging from 3.8 to 10.4 cm. First arrival velocities of Br- ranged from 0.004 to 64.8 m d(-1), 10 to 100 times faster than predicted for unfractured media. Nitrate behaved as a conservative tracer in weathered till columns, but degraded during experiments using deeper tills. Sorption caused retardation of atrazine in the shallowest four columns. Atrazine degradation occurred in deeper columns as demonstrated by deviations between atrazine and the conservative tracers. Mobile-immobile model (MIM) simulations estimated first-order exchange coefficients (alpha) ranging from 1 x 10(-8) to 1.7 x 10(-2) s(-1), sorption coefficients (K(d)) for atrazine ranging from 2.6 x 10(-5) to 1 x 10(-3) m3 kg(-1), and degradation half-lives ranging from 0.24 to 67 d (nitrate) and 1.6 to 277 d (atrazine). This study suggests that aquifers and surface waters associated with thin, fractured till units may be vulnerable to contamination, yet deeper aquifers may be protected by these materials due to increased residence times provided by matrix diffusion.  相似文献   

13.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

14.
A batch reactor was used to determine sorption kinetic parameters (k2, F, and K*) and the equilibrium sorption coefficient (K). The two-site nonequilibrium (TSNE) batch sorption kinetics model was used to calculate the kinetic parameters. Two probe organic pesticides, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] and diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] were studied using three carbonatic soils from South Florida (Chekika, Perrine, and Krome), one noncarbonatic soil from Iowa (Webster), and one organic soil (Lauderhill) from South Florida. Carbonatic soils contained more than 600 g kg(-1) CaCO3. Sorption is initially very fast up to 3 h and then slowly reaches equilibrium. All soil-chemical combinations reached sorption equilibrium after about 24 h and all sorption isotherms were linear. The sorption kinetics data were well described by the TSNE model for all soil-chemical combinations except for the marl soil data (Perrine-Atrazine), which were better described by the one-site nonequilibrium (OSNE) model. Diuron, with higher K, undergoes slower sorption kinetics than atrazine. The Lauderhill soil containing organic carbon (OC) of 450 g kg(-1) exhibited slowest sorption kinetics for both pesticides. An inverse relationship between k3 and K was observed for atrazine and diuron separately in Chekika, Webster, and Lauderhill soils but not in Perrine and Krome soils. The sorption kinetic parameters were used to distinguish the sorption behavior between atrazine and diuron and to identify differences between soils. Normalizing the sorption coefficient (K) to OC showed that atrazine and diuron had K oc values in carbonatic soils that were a third of reported literature values for noncarbonatic soils. Using existing literature K oc values in solute transport models will most likely underestimate the mobility of atrazine, diuron, and other neutral organic chemicals in carbonatic soils.  相似文献   

15.
Prosulfuron [1-(4-methoxy-6-methyltriazin-2-yl)-3-[2-(3,3,3-trifluoropropyl) phenylsulfonyl]-urea), a relatively new sulfonylurea herbicide, is a weak acid (pK(a) 3.76), and therefore, will undergo pH-dependent speciation and sorption. Understanding prosulfuron sorption in soils is important for predicting its environmental fate. Soil and solution factors controlling sorption were investigated by measuring prosulfuron sorption on five model sorbents (amorphous silica, alpha-alumina, CaSWy1 montmorillonite, commercial humic acid, and anion exchange resin) and 10 variable-charge soils from CaCl(2) and Ca(H(2)PO(4))(2) solutions as a function of pH and ionic strength. Anion exchange of prosulfuron accounted for up to 82% of overall sorption in the pH range from 3 to 7. The relative importance of anion exchange to prosulfuron sorption was positively correlated to the ratio of anion and cation exchange capacities. Comparison between organic carbon (OC)-normalized sorption (K(oc)) versus pH for humic acid and variable-charge soils show similar trends with sorption decreasing with increasing pH. However, K(oc) values estimated from variable-charge soils in the lower pH range where anion exchange has the greatest contribution to sorption was almost one log unit greater than that estimated from humic acid clearly exemplifying the impact of anion exchange. Similarity in K(oc)-pH curves for humic acid and variable-charge soils may result from the fact that (i) cation exchange capacity increases with increasing OC content, thus effective anion exchange capacity is reduced; and (ii) the relative contribution of hydrophobic and hydrophilic sorption mechanisms was fairly constant. Given that both hydrophilic and hydrophobic sorption of prosulfuron decrease with increasing pH, addition of fertilizer and lime amendments may enhance the potential for off-site leaching of recently applied acidic pesticides.  相似文献   

16.
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.  相似文献   

17.
Antibiotics reach soils via spreading of manure or sewage sludge. Knowledge on the transport behavior of antibiotics in soils is needed to assess their environmental fate. The effect of flow rate and applied mass, i.e., input concentration and pulse duration, on the transport of 14C-sulfadiazine (SDZ; 4-aminoN-pyrimidin-2-yl-benzenesulfonamide) was investigated with soil column experiments and numerical studies. Sulfadiazine was applied in pulses (6.8, 68 or 306 h) under steady-state (0.051 and 0.21 cm h(-1)) and intermittent flow conditions and at two input concentrations (0.57 and 5.7 mg L(-1)). Breakthrough curves (BTCs) of 14C were measured and for one experiment concentrations of SDZ, and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline (An-SDZ) and N(1)-2-(4-hydroxypyrimidinyl)benzenesulfanilamide (4-OH-SDZ) were determined. After finalizing the leaching experiments, 14C was quantified in different slices of the columns. A lower flow rate led to remarkably lower eluted masses compared with the higher flow rates. All BTCs could be described well using a three-site attachment-detachment model for which a common set of parameters was determined. However, the BTC obtained with the high input concentration was slightly better described with a two-site isotherm-based model. The prediction of the concentration profiles was good with both model concepts. The fitted sorption capacities decreased in the order SDZ > 4-OH-SDZ > An-SDZ. Overall, the experiments reveal the presence of similar mechanisms characterizing SDZ transport. The dependence of model performance on concentration implies that although the three-site attachment-detachment model is appropriate to predict the transport of SDZ in soil columns, not all relevant processes are adequately captured.  相似文献   

18.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   

19.
Reactive barriers are used for in situ treatment of contaminated ground water. Waste green sand, a by-product of gray-iron foundries that contains iron particles and organic carbon, was evaluated in this study as a low-cost reactive material for treating ground water contaminated with the herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] and metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide]. Batch and column tests were conducted with 11 green sands to determine transport parameters and reaction rate constants for the herbicides. Similar Fe-normalized rate constants (K(SA)) were obtained from the batch and column tests. The K(SA) values obtained for green sand iron were also found to be comparable with or slightly higher than K(SA) values for Peerless iron, a common reactive medium used in reactive barriers. Partition coefficients ranging between 3.6 and 50.2 L/kg were obtained for alachlor and between 1.0 and 54.8 L/kg for metolachlor, indicating that the organic carbon and clay in green sands can significantly retard the movement of the herbicides. Partition coefficients obtained from the batch and column tests were similar (+/-25%), but the batch tests typically yielded higher partition coefficients for green sands exhibiting greater sorption. Calculations made using transport parameters from the column tests indicate that a 1-m-thick reactive barrier will result in a 10-fold reduction in concentration of alachlor and metolachlor for seepage velocities less than 0.1 m/d provided the green sand contains at least 2% iron. This level of reduction generally is sufficient to reduce alachlor and metolachlor concentrations below maximum contaminant levels in the United States.  相似文献   

20.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号